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Abstract. A popular way to solve optimal transport problems numerically is to assume that the
source probability measure is absolutely continuous while the target measure is finitely supported.
We introduce a damped Newton algorithm in this setting, which is experimentally efficient, and we
establish its global linear convergence for cost functions satisfying an assumption that appears in the
regularity theory for optimal transport.
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1. Introduction

Some problems in geometric optics or convex geometry can be recast as optimal trans-
port problems between probability measures: this includes the far-field reflector antenna
problem, Aleksandrov’s Gaussian curvature prescription problem, etc. A popular way
to solve these problems numerically is to assume that the source probability measure is
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absolutely continuous while the target measure is finitely supported. We refer to this setting
as semi-discrete optimal transport. Among the several algorithms proposed to solve semi-
discrete optimal transport problems, one currently needs to choose between algorithms
that are slow but come with a convergence speed analysis [29, 8, 21] or algorithms that
are much faster in practice but which come with no convergence guarantees [5, 27, 11,
22, 10]. Algorithms of the first kind rely on coordinatewise increments, and the number
of iterations required to reach the solution up to an error of ¢ is of order N3 /e, where N
is the number of Dirac masses in the target measure. On the other hand, algorithms of
the second kind typically rely on the formulation of the semi-discrete optimal transport
problem as an unconstrained convex optimization problem which is solved using a Newton
or quasi-Newton method.

The purpose of this article is to bridge this gap between theory and practice by
introducing a damped Newton algorithm which is experimentally efficient and by proving
the global convergence of this algorithm with optimal rates. The main assumption is that
the cost function satisfies a condition that appears in the regularity theory for optimal
transport (the Ma—Trudinger—Wang condition) and that the support of the source density is
connected in a quantitative way (it must satisfy a weighted Poincaré—Wirtinger inequality).
In §1.7, we compare this algorithm and the convergence theorem to previous computational
approaches to optimal transport.

1.1. Semi-discrete optimal transport

The source space is an open domain €2 of a d-dimensional Riemannian manifold, which
we endow with the measure ’Hg induced by the Riemannian metric g on the manifold. The
target space is an (abstract) finite set Y. We are given a cost function ¢ on the product
space Q2 x Y, or equivalently a collection (c(-, ¥))yey of functions on 2. We assume that
the functions c(-, y) are of class ¢ on Q:

VyeVY, c(,y) ecC (). (Reg)

Here C™*(2) denotes the class of functions which are n-times differentiable and whose
n-th derivatives are «-Holder continuous. In particular, 92 is the space of «-Holder
continuous functions. We consider a compact subset X of €2 and a probability density p on
X, i.e. pdH? is a probability measure. By an abuse of notation, we will often conflate the
density p with the measure p dH itself. Note that the support of p is contained in X, but
we do not assume that it is actually equal to X. The push-forward of p by a measurable
map T : X — Y is the finitely supported measure Typ = Zvey ,o(T_1 (3))8y. The map
T is called a transport map between p and a probability measure i on Y if Typ = . The
semi-discrete optimal transport problem consists in minimizing the transport cost over all
transport maps between p and u, that is,

min{/ c(x, T(x))p(x) d’Hg(x) T : X — Y such that Typ = u}. M)
X

This problem is an instance of Monge’s optimal transport problem, where the target
measure is finitely supported. Kantorovich proposed a relaxed version of the problem (M)
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as an infinite-dimensional linear programming problem over the space of probability
measures with marginals p and .

1.2. Laguerre tessellation and economic interpretation

In the semi-discrete setting, the dual of Kantorovich’s relaxation can be conveniently
phrased using the notion of Laguerre tessellation. We start with an economic metaphor.
Assume that the probability density o describes the population distribution over a large
city X, and that the finite set Y describes the location of bakeries in the city. Customers
living at a location x in X try to minimize the walking cost c(x, y), resulting in a decom-
position of the space called a Voronoi tessellation. The number of customers received by a
bakery y € Y is equal to the integral of p over its Voronoi cell, namely

Vory :={x € Q|Vz €Y, clx,y) <cx,2)}.

If the price of bread is given by a function ¥ : ¥ — R, customers living at location x in X
make a compromise between walking cost and price by minimizing the sum c(x, y)+v¥ ().
This leads to the notion of Laguerre tessellation, whose cells are given by

Lag, (V) :={x e Q[Vz €Y, cx,y) +¥(y) = clx,2) + ¥ (2)}. (1.1)

When the sets X and Y are contained in R? and the cost is the squared Euclidean distance,
the computation of the Laguerre tessellation is a classical problem of computational
geometry, for which there exists very efficient software, such as CGAL [1] or Geogram [2].
For other cost functions, one has to adapt the algorithms, as was done for the reflector cost
on the sphere in [10]. The shape of the Voronoi and Laguerre tessellations is depicted in

)

Fig. 1. Left: the domain X (with boundary in blue) is endowed with a probability density pictured in
grayscale representing the density of population in a city. The set Y (in red) represents the location
of bakeries. Here, X, Y C R2 and c(x,y) =|x — y|2. Middle: The Voronoi tessellation induced by
the bakeries. Right: The Laguerre tessellation: the price of bread at the bakery near the center of X
is higher than at the other bakeries, effectively shrinking its Laguerre cell.

We want the Laguerre cells to form a partition of €2 up to a negligible set. By the
implicit function theorem, this will be the case if the following twist condition holds:

Vx € X, Y >y+> Dyc(x,y) € TSQis injective, (Twist)

where D, denotes differentiation with respect to the first variable. The twist condition
implies that for any prices ¥ on Y, the transport map induced by the Laguerre tessellation,

Ty (x) := argmin(c(x, y) + ¥ (y)), (1.2)
yeY
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is uniquely defined almost everywhere. It is easy to see (Proposition 2.2) that for any
function v on Y, the map Ty, is an optimal transport map between p and the push-forward

measure Ty4p = Zer p(Lag, (¥))3y.

1.3. Kantorovich’s functional

The map T is an optimal transport map between p and Ty#p0. Conversely, Theorem 1.1
below ensures that any semi-discrete optimal transport problem admits such a solution.
In other words, for any probability density p on X and any probability measures @ on Y
there exists a function (price) ¥ on Y such that Tiy#p = v. The proof of this theorem is an
easy generalization of the proof given in [5] for the quadratic cost, but it is nonetheless
included in Section 2 for the sake of completeness.

Here and below, we denote by (1,),cy the canonical basis of RY, and by || - || the
Euclidean norm induced by this basis, while || - || will denote the norm induced by the
Riemannian metric g on either T, €2 or 7,°Q (which will be clear from context). We will,
slightly abusively, consider the space P(Y) of probability measures as a subset of RY .

Theorem 1.1. Assume (Reg) and (Twist), and let p be a bounded probability density on

X andv = Zer vyly in P(Y). Then the functional ® given by

o = [ (minetr. ) + ()0 206 = 3 w1,

yeY

ag,

yeY yey
is concave, C'-smooth, and its gradient is
Vo(y) = Z(p(Lagy(llf)) -yl (1.4)
yer
Corollary 1.2. The following statements are equivalent:

(1) ¥ : Y — Ris a global maximizer of ®;
(ii) Ty is an optimal transport map between p and v;
(iii) Ty#p = v, or equivalently

Vyel, p(Lag,(¥)) =vy MA)

We call the function @ introduced in (1.3) Kantorovich’s functional. Note that both
this functional and its gradient are invariant by addition of a constant. The non-linear
equation (MA) can be considered as a discrete version of the generalized Monge—Ampere
equation that characterizes the solutions to optimal transport problems (see for instance
[34, Chapter 12]).

1.4. Damped Newton algorithm

We consider a simple damped Newton algorithm to solve the semi-discrete optimal trans-
port problem. This algorithm is very close to the one used by Mirebeau [28]. To phrase
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this algorithm in a more general way, we introduce a notation for the measure of Laguerre
cells: for v € RY we set

G =) Gy¥)l, where G,(¥) = p(Lag,(¥)), (1.5)

yeY

so that V® () = G(¥) — v. In Algorithm 1 below, we denote by A™ the pseudo-inverse
of the matrix A.

Algorithm 1. Simple damped Newton’s algorithm

Input: A tolerance n > 0 and an initial ¥g € RY such that
~min[min G (o). min sy ] > 0 (1.6)
€0 ‘= — min|min Gy , min/y | > 0. .
0 2 yeY yivo yeY Hy

While: |Gy (¥y) — uyll =1
Step 1: Compute dj, = —DG(Y) T (G(¥r) — 1)
Step 2: Determine the minimum £ € N such that \//,f = Y + 274 satisfies

min Gy (¥) = €0
IGWH) — ull < 4 = 2= DY G ) — el

Step 3: Set Y1 = Y +2 tdy and k < k + 1.

The goal of this article is to prove the global convergence of this damped Newton algorithm
and to establish estimates on the speed of convergence. As shown in Proposition 6.1, the
convergence of Algorithm 1 depends on the regularity and strong monotonicity of the map
G = V®. As we will see, the regularity of G will depend mostly on the geometry of the
cost function and the regularity of the density. On the other hand, the strong monotonicity
of G will require a strong connectedness assumption on the support of p, in the form
of a weighted Poincaré—Wirtinger inequality. Before stating our main theorem we give
some indication about these intermediate regularity and monotonicity results and their
assumptions.

1.5. Regularity of Kantorovich’s functional and MTW condition

In order to establish the convergence of a damped Newton algorithm for (MA), we need to
study the C>* regularity of Kantorovich’s functional ®. However, while C! regularity of
@ follows rather easily from the (Twist) hypothesis (or even from a weaker hypothesis,
see Theorem 2.1), higher order regularity seems to depend on the geometry of the cost
function in a more subtle manner. We found that a sufficient condition for the regularity
of @ is the Ma—Trudinger—Wang condition [26], which appeared naturally in the study of
the regularity of optimal transport maps. We use a discretization of Loeper’s geometric
reformulation of the Ma—Trudinger—Wang condition [23].
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Definition 1.1 (Loeper’s condition). The cost ¢ satisfies Loeper’s condition if for every y
in Y there exists a convex open subset 2, of R¢ and a C!! diffeomorphism expfv :
Qy — £ such that the functions

Qydpr c(exp; p,y) — c(exp; p, z) are quasi-convex for all z in Y. (QC)

The map exp§ is called the c-exponential with respect to y, and the domain 2y is an
exponential chart.

We comment here that when Y is a finite subset of a continuous space and c satisfies
conditions (Reg), (Twist), and (A3w) (see pages 2604, 2605, and 2631 respectively), the
c-exponential map defined in the usual sense in optimal transport theory (see Remarks 1.1
and 4.4) will satisfy what we call Loeper’s condition above. However, it will become
apparent that for our purposes what is essential is the above quasi-convexity property and
not the actual definition of expj. Thus we will use the notation exp§ even in cases when ¥
is not a finite subset of a continuous space.

Definition 1.2 (c-Convexity). Assuming Loeper’s condition, a subset X of 2 is c-convex
with respect to a point y of Y if its inverse image (expi.)_l (X) is convex. The subset X is
said to be c-convex if it is c-convex with respect to every point y in Y.

Note that by assumption, the domain €2 itself is c-convex. The connection between this
discrete version of Loeper’s condition and the conditions used in the regularity theory for
optimal transport is detailed in Remark 1.1. The (QC) condition implies the convexity of
each Laguerre cell in its own exponential charts, namely (expg,)_l (Lagy(lﬂ)) is convex
for every y in Y. This plays a crucial role in the regularity of Kantorovich’s functional.

Theorem 1.3. Assume (Reg), (Twist), and (QC). Let X be a compact, c-convex subset
of Q and let p be in P*(X) N C¥*(X) for o in (0, 1]. Then Kantorovich’s functional is of
class Clzog on the set

Kt= {(:Y—>R|VyeY, p(Lagy(lp)) > 0}, (L.7)

and its Hessian is given by

BRI / p(x) d—1
= dH, " (x) (2 # ),
01,01, Lag, ())NLag, () IIDxe(x, y) = Dye(x, 2)llg ¢
) : ) (1.8)
0 CD(W) Z -
W) =- v
912 L, 01,01,

The proof of this theorem and a more precise statement are given in Section 4 (Theo-
rem 4.1), showing that the C>% estimate can be made uniform when the mass of the
Laguerre cells is bounded from below by a positive constant.
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Remark 1.1. We remark that under certain assumptions on the cost ¢, our (QC) condition
is implied by classical conditions introduced in a smooth setting by X.-N. Ma, N. Trudinger,
and X.-J. Wang [26], which include the well known (MTW) or (A3) condition. See
Remark 4.4 for more specifics.

There are a wide variety of known examples satisfying these conditions. Aside from the
canonical example of the inner product on R” x R”, and other costs on Euclidean spaces
mentioned in [26, 33], there are the non-flat examples of the Riemannian distance squared
and —log ||x — y||gs+1 on (a subset of) S" x S" (see [24]). The last cost is associated to
the far-field reflector antenna problem. We refer the reader to [19, p. 1331] for a (more)
comprehensive list of such costs.

1.6. Strong concavity of Kantorovich’s functional

As noted earlier, Kantorovich’s functional ® cannot be strictly concave, since it is invariant
under addition of a constant. This implies that the Hessian D>® has a zero eigenvalue
corresponding to the constants. A more serious obstruction to the strict concavity of ® at
a point v arises when the discrete graph induced by the Hessian (where two points are
connected iff 2/ 01,01,(y) # 0) is not connected. This can happen either because one
of the Laguerre cells is empty (hence not connected to any neighbor) or if the support of
the probability density p is itself disconnected. In order to avoid the latter phenomena, we
will require that (X, p) satisfies a weighted L' Poincaré~Wirtinger inequality.

Definition 1.3 (weighted Poincaré—Wirtinger). A continuous probability density p on
a compact set X C  satisfies a weighted Poincaré—Wirtinger inequality with constant
Cpw > 0 if for every C! function f on X,

If =Eo(Dliipy = CowllV L1y (PW)

where [|hll 1,y := [y 1h(0)]p () dHG (x) and Ey(f) := [y f(0)p(x) dHG (x).

We denote by Ey the orthogonal complement (in RY) of the space of constant functions
on Y, thatis, Ey := {¢ € RY | Zy ¥ (y) = 0}. As before, K7 is the set of functions
whose Laguerre cells all have positive mass.

Theorem 1.4. Assume (Reg), (Twist), and (QC). Let X be a compact, c-convex subset
of 2, and p be a continuous probability density on X satisfying (PW). Then Kantorovich’s
functional ® is strictly concave on Ey N K™,

As before, a more quantitative statement is proven in Section 5 (Theorem 5.1), establishing
strong concavity of ® under the assumption that the mass of the Laguerre cells is bounded
from below by a positive constant.
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1.7. Convergence result

Putting Proposition 6.1, Theorem 1.3 and Theorem 1.4 together, we can prove the global
convergence of the damped Newton algorithm for semi-discrete optimal transport (Algo-
rithm 1) together with optimal convergence rates.

Theorem 1.5. Assume (Reg), (Twist), and (QC), and also that

(1) the support of the probability density p is included in a compact, c-convex subset X
of Q, and p € C®%(X) for a in (0, 1],
(i1) p has positive Poincaré—Wirtinger constant.

Then the damped Newton algorithm for semi-discrete optimal transport (Algorithm 1)
converges globally with linear rate and locally with rate 1 + «.

Remark 1.2. This theorem makes no assumption about the convexity (or c-convexity)
of the support of the source density p. Such cases are not handled by other numerical
methods for Monge—Ampere equations [6, 24]. For completeness, in Appendix A we
provide an explicit example of a radial measure on R? whose support is an annulus but
whose Poincaré—Wirtinger constant is nonetheless positive.

Remark 1.3. The positive lower bound on the damping parameter (t; = 2~¢ in Algo-
rithm 1) established in this theorem degrades as N grows to infinity. It is plausible (but far
from direct) that one could control this quantity when N is large by a comparison to the
continuous Monge—Ampere equation. The strong concavity estimate (Theorem 1.4) would
then need to be replaced by uniform ellipticity estimates for the linearized Monge—Ampere
equation, while the regularity estimate (Theorem 1.3) would be replaced by regularity esti-
mates for solutions to the Monge—Ampere equation. We refer to Loeper and Rapetti [25]
for an implementation of this ideas in a continuous setting. The space-discretization of
their approach is open.

Comparison to previous work. There exist a few other numerical methods relying on
Newton’s algorithm for the resolution of the standard Monge—Ampere equation or for
the quadratic optimal transport problem. Here, we highlight some of the differences
between Algorithm 1 and Theorem 1.5 and these existing results. First, we note that
many authors have reported the good behavior in practice of Newton’s or quasi-Newton’s
methods for solving discretized Monge—Ampere equations or optimal transport problems
[27, 11, 6]. Note however that none of these works contain convergence proofs for the
Newton algorithm.

Loeper and Rapetti [25] (their result was refined by Saumier, Agueh, and
Khouider [31]) establish the global convergence of a damped Newton method for solving
quadratic optimal transport on the torus, relying heavily on Caffarelli’s regularity theory.
In particular, the convergence of the algorithm requires a positive lower bound on the
probability densities, while this condition is not necessary for Theorem 1.5 (see Section 5
and Appendix A where we explicitly construct probability densities with non-convex
support that still satisfy the hypothesis of Theorem 1.5). A second drawback of relying on
the regularity theory for optimal transport is that the damping parameter, which is an input
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parameter of the algorithm used in [25], cannot be determined explicitly from the data.
Third, the convergence proof is for continuous densities, and it seems difficult to adapt it
to the space-discretized problem. On the positive side, it seems likely that the convergence
proof of [25], [31] can be adapted to cost functions satisfying the Ma—Trudinger—Wang
condition (which is equivalent to Loeper’s condition (QC) that we also require).

Oliker and Prussner [29] prove the local convergence of Newton’s method for finding
Aleksandrov’s solutions to the Monge—Ampere equation detD’u = v with Dirichlet
boundary conditions, where v is a finitely supported measure. Global convergence for a
damped Newton algorithm is established by Mirebeau [28] for a variant of Oliker and
Prussner’s discretization, but without convergence rates. Theorem 1.5 can be seen as
an extension of the strategy applied by Mirebeau to optimal transport problems, which
amounts to (a) replacing the Dirichlet boundary conditions with the second boundary value
conditions from optimal transport, (b) replacing the Lebesgue measure by more general
probability densities, and (c) changing the Monge—Ampere equation itself in order to deal
with more general cost functions.

We also comment here that our result Theorem 5.1 answers a conjecture first raised
by Gangbo and McCann in the case when the cost function satisfies the Ma—Trudinger—
Wang condition. In [15, Example 1.6], a numerical approach to the semi-discrete optimal
transport problem is suggested by taking what is equivalent to the negative gradient
flow of the Kantorovich function defined in (1.3) above. There, Gangbo and McCann
conjecture that this gradient flow should converge, and our result of uniform concavity of
the Kantorovich functional confirms a quantitative strengthening of this conjecture, at least
for costs, measures, and domains satisfying the assumptions of Theorem 5.1.

Finally, we note that the overall strategy for proving the convergence of Algorithm 1
(proving regularity then strict concavity of ®) shares features of the one used in [9] to
study the relationship between highly anisotropic semi-discrete quadratic optimal transport
and Knothe rearrangement.

QOutline. In Section 2, we establish the differentiability of Kantorovich’s functional @,
adapting arguments from [5]. In Sections 3 and 4, we prove the (uniform) second-
differentiability of Kantorovich’s functional when the cost function satisfies Loeper’s
(QC) condition. Section 5 is devoted to the proof of uniform concavity of Kantorovich’s
functional when the probability density satisfies a Poincaré—Wirtinger inequality (PW). In
Section 6, we combine these intermediate results to prove the convergence of the damped
Newton algorithm (Theorem 1.5), and we present a numerical illustration. Appendix A
presents an explicit construction of a probability density with non-convex support over R¢
which satisfies the assumptions of Theorem 1.5. Appendix B contains the details of the
proof of the main theorem of Section 4.

2. Kantorovich’s functional
The purpose of this section is to present the variational formulation introduced in [5] for

the semi-discrete optimal transport problem, adapting the arguments presented [5] for
the squared Euclidean cost in to cost functions satisfying (Reg’) and (Twist’), which are
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weaker than the conditions (Reg) and (Twist) presented in the introduction:

VyeY, c(,y) eCQ), (Reg’)
Vy#£Az€Y, Vt eR, Hfé((c(~, y) —c(-, z))_l(t)) =0. (Twist")

Note that under (Twist’), the map T, : X — Y defined by (1.2) is uniquely defined
Hg-almost everywhere. Most of the results presented here are well known in the optimal
transport literature; however, we include proofs for completeness.

Theorem 2.1. Assume (Reg') and (Twist'), and let p be a bounded probability density
on X andv =) _y v\8y a probability measure over Y. Then the functional ® defined

by (1.3) is concave, C'-smooth, and its gradient is given by (1.4).
The proof of Theorem 2.1 relies on Propositions 2.2 and 2.3.

Proposition 2.2. For any ¢ : Y — R, the map Ty is an optimal transport map for the
cost ¢ between any probability density p on Q2 and the push-forward measure v := Tyyp.

Proof. Assume that v = Szp where S is a measurable map between X and Y. Then, by
definition of Ty,

Vxe X, clx, Ty(x)+ ¢ (Ty () < clx, S(x)) + ¥ (Sx)).
Multiplying this inequality by p and integrating it over X gives

/X(C(x, Ty (X)) + ¥ (Ty (x)) p(x) dHG (x) < /X(C(x, S(0) + ¥ (S(x) p(x) dHY (x).

Since v = Szp = Ty#p, the change of variable formula gives

/X Y (S(x)p(x) dHE (x) = fY p(y)dv = /X ¥ (Ty ())p(x) dHY (x).

Subtracting this equality from the inequality above shows that Ty, is optimal:

/X c(x, Ty (0)p(x) dHG(x) < /X c(x, S())p(x) dHg (x). O

Proposition 2.3. Assume (Twist') and (Reg’). Let p be a probability density over a com-
pact subset X of Q. Then the map G : RY — RY is continuous, where

G(¥) = (p(Lagy(¥)))yer- 2.0

Lemma 2.4. Let p be a probability density over a compact subset X of Q, and let f
in CO(X) be such that ,o(f_l(t)) = 0 for allt € R. Then the function g : t +>
,o(f_l ((—o0, t])) is continuous.
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Proof. We consider the function h(t) = ,o(f_1 ((—o00, 1))). By hypothesis, g(¢) — h(t) =
o(f~1(t)) = 0. Using Lebesgue’s monotone convergence theorem one easily sees that g
(resp. h) is right-continuous (resp. left-continuous). This concludes the proof. O

Proof of Proposition 2.3. Proving the continuity of G amounts to proving the continuity
of the functions Gy () := p(Lag,(y)) for any y in Y. Fix y in ¥ and observe that by
definition, Lag, (y) = ﬂ#yey H, () where

H () :={x e X |c(x,y) +¥(y) =clx,2) + ¥ (2}
Denoting by A A B the symmetric difference of two sets, we have the inequalities
IGy(¥) — Gy(9)| = p(Lag, (V) A Lag,(9)) < Z p(H;(Y) A H: (). (2.2)
z€¥\{y}

Fix z # y € Y, and denote f = c(-, y) — c(-, z). Then
H,(¥) A Hy(p) € (@) — ¥ (), 9(2) — e(M)D).

Here and below, we use the convention that [a, b] = [min{a, b}, max{a, b}]. By (Twist")
and Lemma 2.4 we know that limy, .y o (H;(¥) A H,(¢)) = 0, which by (2.2) concludes
the proof. O

2.1. Proof of Theorem 1.1

We simultaneously show that the functional is concave and compute its gradient. For any
function v on Y and any measurable map T : X — Y, one has minycy (c(x, y) +v¥(y)) <
c(y, T(y)) + ¥ (T (y)), which by integration gives

Q(y) < /X(C(x, T(x)) + ¥ (T (x))) p(x) dH (x) — Z Y (y)vy. (2.3)
yeY

Moreover, equality holds when T' = T,. Taking another function ¢ on Y and setting
T =T, in (2.3) gives

DY) < P(p) +(G(p) —v | ¥ — o),

where G is as in Proposition 2.3. This proves that the superdifferential 3™ ® (¢) contains
G(¢) — v, thus establishing the concavity of ® and its differentiability almost everywhere.
It is known by [30, Theorem 25.6] that

0+ () = conv] lim Vo) | () € S},

where conv denotes the convex envelope and S the set of sequences (¢,,) converging to ¢
such that & is differentiable at ¢,,. By Proposition 2.3, the map G is continuous, meaning
that we have constructed a continuous selection of the superdifferential of the concave
function &:

AT d(p) = conv{nlirrolo VdJ(fp,,)} = conv{nl_i)n;o G(pp) — v} ={G(p) —v}.

This proves that & is C!, and that Vo(p) = G(p) —v.
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3. Local regularity in a c-exponential chart

The results presented in this section constitute an intermediate step in the proof of C>*
regularity of Kantorovich’s functional. Let Xbea compact, convex subset of R? and
fis..., fn be ¢!! functions on X which are quasi-convex, meaning that for any scalar
A € R the closed sublevel sets K; (1) := ff‘ ([—o0, A]) are convex. Let p be a continuous
probability density over X. The purpose of this section is to give sufficient conditions for
the regularity of the following function G near the origin of RV:

G:RVNsA> . p(x) dHY (x), (3.1)

where
N

K3 = ()KiGi)=1{x e X |Vie{l,....N}, fi(x) <A}.
i=1

3.1. Assumptions and statement of the theorem

We will impose two conditions on the functions (f;)1<;<n. As we will see in Section 4,
both conditions are satisfied when these functions are constructed from a semi-discrete
optimal transport transport problem whose cost function satisfies Loeper’s condition (see
Definition 1.1).

Non-degeneracy. The functions ( f;) satisfy the non-degeneracy condition if the norms of
their gradients are bounded from below by a positive constant:

&nd := min min ||V fi] > 0. (ND)
I<i<N %
This condition is necessary for the continuity of the map G even when N = 1.

Transversality. The boundary of the convex set K(A) can be decomposed into N + 1
facets, namely (K (L) N 0K;(X;))1<i<y and K(A) N 3X. The purpose of the transversality
condition we consider is to ensure that the angle between adjacent facets is bounded from
below by a positive constant when A remains close to some fixed vector Ag.

Definition 3.1 (Normal cone). Let K be a convex compact set of R¢. The normal cone
to K at a point x in K is the set

NiK ={veR!|Vyek, (y—x]|v) <0}, (32)
and its elements are said to be normal to K at x.

Definition 3.2 (Transversality). The family ( f;) of functions satisfy the transversality
condition near A if there exist positive constants &, and Ty < 1 such that for every A
in R satisfying |[A — Aglloc < Ty for the usual £ norm on R" and every point x in
dK (L) one has:
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if3i #jef{l,....,N}, filx) =A and fj(x) = A;,
: : 2
hen < (V£i(x) | V() > 1
IV GOV f ol
if3 e{l,...,N}, fi(x) =A; and x € 0X,

(T)

N ETARA 16 )2 s
henVu € NG X, (LI A0y 2
fen i (IIuIIIIij(x)II =l-a

Note that if 3 X is smooth at x, then N X is the ray spanned by the exterior normal to X
at x.

Theorem 3.1. Assume that the functions f; satisfy the non-degeneracy condition (ND)
and the transversality condition (T) near Ao. Let p be a C*% probability density on X.
Then the map G defined in (3.1) is of class CY on the cube Q := Ao + [— T, Tuel™ and
has partial derivatives given by

G b

2 =/ P i, (3.3)

N Knak; o) 1V il

In addition, the norm ||é|| cle(Q) is bounded by a constant depending only on &, €ng,

”laHCOﬂ(f()’ on the diameter of X and on

Cy = max ||V f; Cr:= max |[Vfilly.. ¢\
o= max IV filloe,  Cpi= max 19 il

Note that the C constant of G depends on the transversality constant & but does not
depend on Ti.

3.2. Sketch of proof

The correct expression for the partial derivatives of G, given by (3.3), can easily be
guessed by applying the coarea formula. The non-degeneracy condition then ensures that
the denominator in this expression does not vanish. What is more delicate is to prove
that these partial derivatives are «-Holder, with a uniform estimate on the «-Ho6lder norm.
A second application of the coarea formula on the manifold ffl (A;) suggests that for
J # i one should have

a/ D a1
K

2 < CHY2(K W) N K () NOK;(A))
A Jrwnak,op IV il ( i%0)

unAder the assumption that the density p is C ! and the facet K (A\)Nd K; (1) does not intersect
dX. It will turn out that, thanks to the transversality hypothesis, the H¢~2-measure of the
union X (A) of these facets can be uniformly bounded:

= [J (Kkmnaxnakia)u |J (K& NaKi() NaK; ().
1<i<N I<i<j<N
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Note also that equivalently, a point x belongs to the singular set X (1) if and only if it
satisfies one of the assumptions in (T). In the next subsection, we prove an upper bound
on H472(Z (L)) (see Proposition 3.2). The proof of Theorem 3.1 follows from this upper
bound and from several applications of the coarea formula. Since it is elementary but quite
long, we have postponed the proof of the theorem itself to Appendix B.

3.3. Control on the (d — 2)-Hausdorff measure of singular points

In this section, we prove that the transversality condition (T) and the quasi-convexity of
the functions f; imply a uniform upper bound on the (d — 2)-Hausdorff measure of X ().

Proposition 3.2. Assuming the transversality condition (T), there exists a constant de-
pending only on d and diam(X) such that for ||A||co < T,

HI72(Z(V) < CWd diam(f())i.

Etr

We will deduce this proposition from a general upper bound on the (d — 2)-Hausdorff
measure of the set of t-singular points of a compact convex body. A more general and
quantitative version of this bound can be found in [18]. Below we provide a straightforward
and easy proof based on the notions of packing and covering numbers.

Proposition 3.3. Let K be a convex, compact subset of R? and t > 0. Then
1
HI=2(Sing(K, 1)) < C(d, diam(K)) -,
T

where Sing(K, 7) := {x € 9K | Ju,v e Nx(K) NS, (u | v)? <1 —17?}.

Recall that the covering number Cov(K, n) of a subset K C R is the minimum number
of Euclidean balls of radius » required to cover K. The packing number of a subset K is
given by

Pack(K, ) := max{Card(X) | X C K andVx #y € X, |lx — y|| > n}.
We will use the following comparisons between covering and packing numbers:
Cov(K, n) < Pack(K, n) < Cov(K, n/2). (3.4)

Proof of Proposition 3.3. The proof consists in comparing a lower bound and an upper
bound of the packing number of the set

U:={(x,n) e R x S9! | x € Sing(K, r) and n € Ny (K)}.

Step 1. We first calculate an upper bound on the covering number of the unit bundle
UK = {(x,n) € 0K x Sd-1 | n € NyxK}. Given r > 0, we denote by K" the set of
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points within distance r of K. By convexity, the projection map px : RY — K, mapping a
point to its orthogonal projection on K, is well defined and 1-Lipschitz. We consider

x —pk (x) )
lx —px I/

The map 7 is surjective and has Lipschitz constant L := /1 + 4/r2. We deduce an upper
bound on the covering number of /K from the covering number of the level set dK":

Cov(U(K), e) < Cov(dK", e/L).

79K > UK), x> (pk(x),

Now, consider a sphere S with diameter 2 diam(K) that encloses the tubular neighbor-
hood K" with r := diam(K). The projection map pk- is 1-Lipschitz, and pg-(S) = 0K".
Using the same argument as above, we have

Cov(dK", n) < Cov(S.n) < C(d) - (diam(K)/m~".
Combining these bounds with the inclusion U C U(K) gives

C(d, diam(K))

Cov(U,¢) < pr

(3.5)

Step 2. We now establish a lower bound for Pack(U, 2¢). Let x be a t-singular point and
u, v be two unit vectors such that (1 | v)? < 1—t2. This implies that N, K NS?~! contains
a spherical geodesic segment of length at least C - 7, giving us a lower bound on the packing
number of NV K NS?~!, namely Pack(N; K NS?~!, ) > C-1/n. Now, let X be a maximal
set in the definition of the packing number Pack(Sing(KX, t), 2¢), and for every x € X,
let Y, be a maximal set in the definition of the packing number Pack(NV; (K) NS4, 2¢),
so that Card(Y,) > C - t/e. Thenthe set Z := {(x,y) | x € X, y € Y.} is a 2e-packing
of U, and the cardinality of this set is bounded from below by C - Card(X) - t/¢. This
gives

Pack(U, 2¢) > C - Pack(Sing(K, 1), 2¢) - T/¢. 3.6)
Step 3. Combining (3.5), (3.6) and the comparison between packing and covering numbers
(3.4), we get

C(d, diam(K))

Pack(Sing(K, 1), 2¢) < )
Ted-

Using the comparison between packing and covering numbers, this means that we can
cover Sing(K, ) with N, balls of radius ¢ such that N, < C(d, diam(K))/(te?72). By
definition of the Hausdorff measure, we have

1
H2(Sing(K , 7)) < limi(r)lngsd_z < C(d, diam(K))—. O
£— T

Proof of Proposition 3.2. Given ||A||ec < Ty, the transversality condition (T) implies

2
Vi e TV, Ju, v e oK), < {ulv) ) <1-¢2,
lll vl
where A, K (1) is the normal cone to the convex set K (L) at x (see (3.2)). This implies
that X () is included in the set Sing(K (), &) of t-singular points with T = g. The
conclusion then follows from Proposition 3.3. O
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4. C>“ regularity of Kantorovich’s functional

This section is devoted to the proof of the following regularity result. Recall that the
conditions (Reg), (Twist), and (QC) are defined in the introduction on pages 2604, 2605,
and 2608 respectively.

Theorem 4.1. Assume (Reg), (Twist), and (QC). Let X be a compact, c-convex subset
of Q and p in P*(X) NC**(X) for some o in (0, 1]. Then the Kantorovich functional ®
is uniformly C>% on the set

Kéf={y:Y—>R|Vyey, p(Lag,(¥)) > &} “4.1)

and its Hessian is given by (1.8). In addition, the C** norm of the restriction of ® to K*
depends only on || p|lco, & diam(X), and the constants defined in Remark 4.1 below.

For the remainder of the section, for any point y in ¥, we will denote by X, = (expfv)_l (X)

C R the inverse image of the domain X in the exponential chart at y. The set X y 18
convex by c-concavity of X. We consider the functions

foy 1 Xy 2 p > clexpi(p), y) — c(expy(p), 2),

which are quasi-concave by (QC). The main difficulty in deducing Theorem 4.1 from
Theorem 3.1 is to establish the quantitative transversality condition (T) introduced on
p. 2615 for the family (f7 y)zer\(y}-

Remark 4.1 (Constants). The C>* norm of the restriction of ® to /C® explicitly depends
on the following constants, whose finiteness (or positivity) follows from the compactness
of the domain X, the finiteness of the set ¥ and the conditions (Reg), (Twist), and (QC):

&w = min min ||[Dyc(x, y) — Dyc(x, 2)[lg > 0,

xeX y,zeY
y#z
Cv:= max [Dyc(x,y)lly < +o0,
(x,y)eXxY
Cexp = max max{ lexp}, Lip(x,). llexp$) ™" ILipx)} < +o00, (4.2)
where we recall that X, := exp;l(X ). Our estimates will also rely on the following

constants involving the differential of the exponential maps. As before, the tangent spaces
T, Q2 are endowed with the Riemannian metric g from 2. We set
Ccond := max max cond(D expfV Ip),
yeY peX,
Cet = max ||det(D exp) llLip(x, )
yeyY ;
where cond(A) is the condition number of a linear map A on a finite-dimensional normed

space and det(A) is the determinant of A. The quantitative transversality estimates involve
all the above constants in an explicit way (see (4.14)).
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Remark 4.2. Even in the Euclidean case, one needs a lower bound on the volume of
Laguerre cells in order to establish the second-differentiability of the functional . Indeed,
let yr = +£1, y0=0,and Y = {y_, yo, y+} C R. Consider the cost c¢(x, y) = —xy and
the density p = 1 on X = [—1/2,1/2]. Let ¢, € RY be defined by ¢(y+) = 1/2 and
¢(y0) = t. A simple calculation gives, for T > 0,

ad
01y,

() = max(l — 21, 0),

which is not differentiable at T = 1/2, even though (Reg), (Twist), and (QC) are all
satisfied.

QOutline. In Section 4.1, we establish a part of the transversality condition using elementary
properties of convex sets (Proposition 4.2). We establish in Section 4.2 a second transver-
sality condition using additional assumptions and proceed in Section 4.3 to the proof of
Theorem 4.1. In Section 4.4, we propose an alternative transversality estimate when Y is a
sample subset of a target domain Q' (Proposition 4.8).

4.1. Lower transversality estimates

Next, we undertake a series of proofs to obtain explicit constants in the transversality
estimate (T), which depend on the choices of cost, domains, and dimension. Consider the
Laguerre cell of a point y in Y in its own exponential chart, that is,

Ly(¥) := (exp$) ™" (Lag,(¥)) = {p € X | foy(p) S ¥ () — YN}

The set Ly () is the intersection of sublevel sets of the functions f; ,, and is therefore
a convex subset of X, by condition (QC). The first proposition establishes that two unit
outer normals to L, with the same basepoint cannot be near-opposite. Recall the definition
of the normal cone from (3.2).

Proposition 4.2. Assume that r lies in K¢/* (see (4.1)). For any y in Y, any point p in
0Ly (Y) and any unit normal vectors v, w € ./\/pLy () one has

(v]w) > —1+8, 4.3)

where 8o := &/(297 || pll oo C2L, diam(X)9) < 1.

The proof of this proposition follows from a general lemma about convex sets. By convexity
(QC), the set L, () is contained in an intersection of two half-spaces with outward normals
v and w at p, giving an upper bound on its volume in term of its diameter and the angle
between v and w (see Figure 2). On the other hand, we know that the volume of L (/) is
bounded from below by a constant depending on ¢. Comparing these bounds will give us
the one-sided estimate (4.3).



2620 Jun Kitagawa et al.

Fig. 2. Bound on the volume of a convex set K as a function of the angle between two normal
vectors v, w at the same point and the diameter of K (see Lemma 4.3).

Lemma 4.3. Let K be a bounded convex set in RY, let p be a boundary point of K and
let v, w be two unit (outward) normal vectors to K at p. Then

HY(K)
2d=2 djam(K)4 ~
Proof. The left-hand side of the inequality is non-positive, so the inequality needs only to
be proven when (v | w) < 0, which we assume from now on. Making a rotation of axes and
a translation if necessary, we assume that p is the origin and the unit vectors span the first
two coordinates of R?. Then, letting H := {p | (p | v) <0}, H :={p | (p | w) < 0}
and D be the two-dimensional disc centered at O of radius diam(K), one has

—1+8%< <{(v|w) where g =

K € HNH' N (D x [—diam(K), diam(K)]?~2).

The intersection H N H' N D is an angular sector of the disc D, whose angle is equal to
0 := m — arccos({v | w)) (see Figure 2). Therefore,

HY(K) < HI(H N H' N (D x [~ diam(K), diam(K)]?72))

< 2972 diam(K)? tan(6/2). (4.4)

Using the expression of cos(f) in terms of tan(6/2) and recalling (v | w) < 0 yields
1
tan(6/2) = % < T+ w. (4.5)
—(v|w
The lemma follows directly from (4.4)—(4.5). m]
Proof of Proposition 4.2. By definition of the bi-Lipschitz constant Cexp,
HULy (1)) = £/2C5,lIple0)  and  diam(Ly () < Cexp diam(X).

Applying the above lemma to the two outward normals v, w at p, we get

HA(Ly (1))? £
W12 30 Gam L, )~ WO, diam(X)%

exp

We also record the following lemma for later use.
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Lemmad4.4. Let y be in Y and let p be a point of Ly(\) such that for some z # Yy,
foy(P) = ¥ (2) — ¥ (y). Then the point p' := (expg)_l(expi.(p)) belongs to L, () and
the vector V f, - (p) lies in the normal cone N,y L ().

Proof. We introduce the point x = expf (p). The hypothesis is equivalent to ¢(x, y) +
¥ (y) = c(x, z) + ¥ (2). Since p belongs to Ly (), the point x belongs to Lag, (). Then,
forany 7/ € Y,

c(x, D)+ Y@ =clx, ) + ¥ () <cx, )+ (@),
thus establishing that x € Lag_(v/) or equivalently p’ € L (). O

4.2. Upper transversality estimates

We now turn to the proof of the quantitative transversality estimates. We begin with a
bound which involves the condition number of the differential of an exponential map (see
Remark 4.1). The advantage of this bound is that we do not have to assume that the points
in Y are sampled from a continuous domain. A second transversality estimate is presented
in §4.4.

Notation. We introduce notation that will be used throughout this section. We fix a point
Yo in Y and an arbitrary ordering of the remaining points, so that ¥ = {yg, y1, ..., yn}.
We define X := X, and for every index i € {1, ..., N} we put

fi = Friyo : X 3 p > c(exp$, (p). Y0) — c(exp$y (p). i)

By the (Twist) condition, the functions fi, ..., fy satisfy the non-degeneracy condition
(ND), and we have the following inequalities:
= min min |V£;(p) — Vf;(p) = Csl 0, 4.6
€nd = Mif pgl)l(l:o IVfi(p) = Vip)ll = Copiw > (4.6)
sup sup [|Vfi(p)ll < CexpCv. 4.7
i#0 peXy,

To any function ¢ : ¥ — R we associate the vector
Ay =G = Y00, -, ¥w) — ¥ (0) € RY. (4.8)
We also consider the same family of convex set as in Section 3:
KM ={peX|VI<i=N, fi(p) <A,
so that K (Ay) = (expg,o)—l(Lagyo(w)).
Proposition 4.5. Assume that . := Ly, where { € K&/% and let p € K (L).
Casel: If fi(p) = A; and fj(p) = Aj fori # jin{l,..., N}, then

( (Vi (P) | V() )2 <o

4.9)
VATV £ (o)l
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Casell: Ifp € 39X and fi(p) = X for someiin {1, ..., N}, then

. Vi 2
Vw e N, X, (M) <1-8. (4.10)
IV i)l wll
In the above inequalities,
) €ndd0
51 = P B
2CCXP CV Ccond

By assumption, each Laguerre cell associated to ¥ contains a mass of at least £/2. This
allows us to apply Proposition 4.2, ensuring that normal vectors to Laguerre cells in their ex-
ponential charts cannot be near-opposite. We denote L; := Ly, () = (expii y—1 (Lagyl_ )
for brevity.

The proposition also relies on two simple lemmas. The first lemma shows the effect of
a diffeomorphism on the normal cone to a convex set when its image is also convex.

Lemma 4.6. Let K C R? be a compact, convex set, let F be a C' diffeomorphism from
an open neighborhood of K to an open subset of RY, and assume that F(K) is also a
convex set. Then, for any point x in 0K,

N (F(K)) = [DFF TFVGK),

where A* denotes the adjoint of A.

Proof. Consider x € 9K and v € N, K, and define ¢(z) := (F~'(z) — x | v). Since v
is an outer normal to K at x, the restriction of ¢ to F(K) is non-positive. Since F(K) is
convex, for any point y € K the set F(K) contains the segment [ F'(x), F (y)]. Therefore

0= (1 —=0)Fx)+1F(y)
> o(F(x)) + 1(Vo(F(x)) | F(y) — F(x)) — o(t)

= H{[DF 1" @) | F() = F(x)) — o(1),

where we have used ¢(F(x)) = 0 and Vo (F (x)) = [DF;&)]*(U) to obtain the equality
at the end. Dividing by 7 and taking the limit as 7 goes to zero, we see that

Vye K, (IDF; 1" | F(y) = F(x)) <0,

thus showing that [DF, (lx)]*(v) belongs to the normal cone to F(K) at F'(x). The converse
inclusion follows from the symmetry of the problem. O

The second lemma compares the angle between two vectors and the angle between their
images under a linear map, using the generalized Wiedlandt inequality (see [17, Section
3.4]). We identify R? with its tangent and cotangent spaces through the Euclidean structure.
We denote the adjoint of the derivative of the exponential map expj at a point p in X, by

. d ~ md
(Dexp;i)*|P : TZXP.@[(P)Q — T;]R = R¢,
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Lemma 4.7. Let y; # y¢ € Y, let x € X and set py := (exp;k)_l(x), pei= (exp;{)_l(x)
and

A == (Dexp$, |p)* o [(Dexp, |,)*17" : Th R — T5 RY.

Then, for all v, w in RY,

- (v]w) (Av | Aw) 4 (v]w)
C4(1+— <l4+—— <ch 14+ —).
cond loll flwli [Av] |Aw]] cond llofl flwli
Proof. Indeed, let 0 be the angle between v and w, and 6’ the angle between Av and Aw,
both in the interval (0, 7). Let ¢ := tan(6/2) and ¢’ := tan(0’/2). The generalized Wied-

landt inequality in [17, Section 3.4] asserts (1/cond(A))t < ¢’ < cond(A)t. Expressing
cos(f) in terms of ¢ = tan(6/2), we obtain

_ t/2

2
/ 2
1+cos(@)=1+ T2 2 = T2 T2 < cond(A)“(1 + cos(0)).

We deduce the second inequality of the conclusion by using cond(Ag[A’f]_l) <
cond(A1) cond(A>) and the definition of the constant Copq. For the first inequality, simply
note that cond(A~!) = cond(A). m]

Proof of Proposition 4.5, Case I. We let
Vi=Vfip) =V, W:=Vfip)=Viwp),

Vv w
vVi=——, W= —.
VI Wi
Switching the indices i and j if necessary, we assume that || V|| < ||W||. The proof depends
on the sign of (W — V | V) (see Remark 4.3 below for the significance of that sign).
Assume first (W — V | V) <0, and let ¢y, := 1/|| V|| and oy, := 1/||W]|. Then

1= (| w) = v —wl® = llawW - V) = (ay —an)VI?

= 0 |[W = VI? + 3@ — eI VI = awl@y — au){W =V | V).

Using oy, < oy and |W — V|| > gyq we end up with

1
1—<v|w>2z1—<v|w>zEoti)nW—vu2

2 2 2
1 & £na% _ 52
T 22,02 T acy,cich "
2 CexpCV exp ~V ~cond

where we have used (4.6) and (4.7), 5o < 1 and C.ong > 1. This establishes the desired
bound when (v | w) € [0, 1]. If (v | w) € [—1, 0], we can apply Proposition 4.2 to show
that 1 — (v | w)2 > 1+ (v | w) > 83 > 87, as desired.
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Now suppose (W — V | V) > 0. A slightly tedious computation gives

s W=V W=V W= V|? (W—V |v)?
wlwy?=1- - —=1- (- )
Wl Al W]l Iw—V|
2
gnd w-V
Sl— ) B 1— W v s (411)
C2,C3 I [

where we have used (W — V | V) > 0 with (4.6) and (4.7) to get the last inequality.
We will now apply Proposition 4.2 to the Laguerre cell L;. By Lemma 4.4, the point
pi = (exp;i)’l(expgo(p)) € Xy, belongs to L; and the vectors V; := V fy, . (p;) and
W; =V fyj, y; (pi) are both normal to L; at p;. Proposition 4.2 then shows that the vectors
V; and W; satisfy
Vi | W;
—14+8 < Vi | Wi 4.12)
IVill IWill

We transfer this inequality to the exponential chart of the original point y( using the linear
map

A == (Dexp$, )" o [(Dexps, [,) 17"

First, note that W — V. = AW; and V = —AYV,. Applying the generalized Wiedlandt
inequality (Lemma 4.7) and (4.12) we have

W-Viv _, <AW1'|AVi>>C—4< <Vi|Wi>>

Iw-vi [AW; || [|AV; | = ~cond IVill Wil
> C 6t =6l (4.13)
Combining this inequality with (4.11) we obtain (4.9) in this case as well. m]

Proof of Proposition 4.5, Case II. Consider V := V f;(p) and let W be any vector
in the normal cone J\/'pf( . When (V | W) < 0, the inequality directly follows from
Proposition 4.2, ensuring that normal vectors cannot be near-opposite. We now assume
(V| W) > 0 and we will apply Proposition 4.2 to the Laguerre cell of y; and transfer
the result to the exponential chart of the point yy. Let p; = (expgi )1 (exp§ (p)). Then, by
Lemma 4.4, p; belongs to L; and V; := V f, ,,(p;) is a normal vector to L; at p;. We
define a second normal vector by considering

A = (Dexp$, |pg)* o [(Dexps, |50 17!

and by setting W; := A=W ¢ T}, R9. By Lemma 4.6, the vector W; belongs to the
normal cone to X, at p;. Moreover, since L; is contained in X, and both sets contain p;,
we have V), X ,, C N, L;, thus ensuring that W; also belongs to the normal cone to L;
at p;. Then, by Proposition 4.2 again,

VilW) e
A
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As before, we transfer this inequality to the exponential chart of the original point y using
the linear map A. We have V =V f;(p) = —AV;,, and by construction W = AW;. We get
the desired inequality by applying Lemma 4.7:

Viw) _  (AVIIAW) <1_|_ <Vi|Wi)>

Cviw IAV; || [IAW; || = ~cond IVill IWill
—4 2 2
z Ccond50 > 87,
and by recalling that (V | W) > 0. m]

4.3. Proof of Theorem 4.1

By Theorem 1.1, the second-differentiability of Kantorovich’s functional ® will follow
from the differentiability of the function

G = [ pwarim = [ i,
Lag, (4) Ly ()

where we have used the change-of-variable formula with x = exp§,0 (p), so that p is

the density of the push-forward measure (exp@o); ! (p?—[g) with respect to the Lebesgue
measure. We recall that

K(hy) = (exp$,) " (Lag, (),

so that G, (Y) = é(x,/,) (as defined in (3.1)). The differentiability of G will be proven
using Theorem 3.1 from the previous section.

Let us fix a function ¥ in Kf and recall that Ag := Ay,,. By Proposition 2.3 there exists
a positive constant T, such that every function ¥ on Y satisfying || —v¥ollco < T belongs
to /C¢/2. Then, by Proposition 4.5, we see that the functions f; satisfy the transversality
condition (T) on the cube Ag + [—Tir, Tir]Y with constant

€ndd0
2CexpCyC2

cond

fr =08 = (4.14)

where we recall that §o = ¢/ Q4 p||ooCéflp diam(X)“). Note also that since p is a-Holder

and since the exponential map is C!-!, the probability density p is also a-Holder with
constant

1Allcoaczy < CUlPllgoa Caer)- (4.15)

We can now apply Theorem 3.1. It ensures that the function G is of class C'* on the
cube Ag + [— T, Tir]V, so that 0P/, is Cl®ona neighborhood of 1. Since this holds
for any point y € ¥ and any function v in K¢, we have established the C>* regularity
of @ on K?. The claimed dependency of || @ || c2.« (ke follows from (4.14)—(4.15) and from
Theorem 3.1.

Our goal is now to deduce the formula for the gradient of G given in Theorem 4.1 (equa-
tion (1.8)) from the formula for the gradient of G given in Theorem 3.1 (equation (3.3)).
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This is done by looking more closely at the change of variable induced by the exponential
map F := expfVO : @ — R4, For ease of notation we let i := c(-, yo)—c(-, y)A = fioF L.
By the definition of push-forward, for any bounded measurable function x on £ we have

/ﬁ X(F(p)p(p)dH? (p) = /Q X(0)p(x) dHG (x).
Multiplying x by the characteristic function of A~ ([z, s]) gives
/ X(F(p)p(p)dH? (p) = f X(0)p(x) dHY (x).
(TR (X))

Applying the coarea formula on both sides, we get

s XEPNLP) a1 / / XXp) g
dH dr = 2 G dr.  (4.16
/ /-l(r) IV fi(p)ll (p)dr = ) ”Vh(x)”g g (x)dr ( )

Using the C .1 smoothness of the functions fi and the (Twist) condition, we can see that
for any x in C2(2), the two inner integrals
F N
. / x(F(p))p(p) d’Hg*‘ x)
fi ()

d'del d / x(x)p(x)
IV () (p) and 7>

w1y VR

depend continuously on r. Using the continuity of these functions in r, equation (4.16)
and the Fundamental Theorem of Calculus, we find that for any function x in C?(Q) and
any r in R,

X(FPNAP) a1 / X@)p(x) 4y
o = L gl ().
/fl(r) IV i)l (P) n-1ry IV g (x)

By Tietze’s extension theorem, (Twist), and (Reg), the level set S := h~!(r) is a C1"!
hypersurface of 2. Thus every function in C?(S ) can be extended to a function in C?(Q).
The previous equality therefore holds for any x in C?(S), and by density, also for any
function x in L'(S). Applying this with x equal to the indicator function of the interface
between the Laguerre cell of yg and the cell of y;, we get the desired formula for the partial
derivatives:

3G A(p) gt
—(w) — @ ):f ————dH""(p)
i oni " Lyy NS wron—voon IV i)l
_ / px) dHE (x).
Lag (¥)NLag,, () ”Dyc(xv Yo) — Dyc(x7 yi)”g
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4.4. Alternative upper transversality estimates

Finally, we state an alternative upper transversality estimate, under the assumption that the
points in Y are sampled from some farget domain A, along with some convexity conditions.
Specifically, let A be a bounded, open subset in some Riemannian manifold, with Y C A.
We then assume that for any x’ € Q°!, the mapping

Yy —D,c(x, y)

is a diffeomorphism onto its range, and we denote the inverse by exp{,. We will also
assume that (expfc)’1 (A) is convex for all x € €, and finally that for any x, x’ € ,
40, q1 € (exp$) ' (A), and 7 € [0, 1],

—c(x, expy (1 = Ngo +1q1)) + (', expl, (1 — Dgo + 1q1)))

< max{—c(x, exp$ (qo)) + c(x", exp$i(qo)), —c(x, expli(q1)) + c(x’, expSi(q1)) }.
4.17)

Note that this last inequality is nothing but quasi-concavity of c(x’, -) — c(x, -) in the
global coordinate chart of A defined by exp{,. For more on these conditions, see Remark
4.4 below.

Proposition 4.8 can be applied to provide an alternative bound in the transversality
condition (T) when the point pg € K (L) is in the interior of X (so in particular, when
dealing with Laguerre cells that do not intersect d X). The advantage of this bound is that
it does not require knowledge of the condition number Ceong.

Recall that we have fixed some point y9 € ¥ = {yi,..., yy} and for any index
i €{l,..., N} we use the notation

fi(P) = fyiy(p) = c(expy, p, yo) — c(exp, p, yi)-

We also redefine the constants Cv and Cexp so that in their definitions, the maximum of y
ranges over the domain A instead of just Y.

Proposition 4.8. Suppose

&€nd
8C2 I pllooHI™ (9X)

Al < T <

and po € K (L) with fi(po) = A; and fj(po) = Aj for somei # jin{l,..., N}. Then

s ) 2
(|<Vﬁ(po) | V£j(po)) ) < (-8 (4.18)

IVAi(po) IV fj(po)l

where

5 ( &&nd )2
2 = — :
4V2CLCE IpllocHe ™ (0X)
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Remark 4.3. Before embarking on the proof of this “continuous” upper transversality
estimate, we compare some key features of its proof with that of the “discrete” upper
transversality estimate, Proposition 4.5. By considering the case when the two vectors
V fi(po) and V fj(po) are collinear, we can see that both proofs rely on the same core idea.
In this case, V f;(po) and V f; (po) are outward normal vectors (in coordinates induced by
expio, see Remark 4.4) to the sublevel sets {—c(-, yo) + ¥ (y0) < —c(-, yi) + ¥ (y;)} and
{=c(, yo) + ¥ (yo) < —c(-, yj) +¥(y;)} respectively at po which lies on the intersection
of their boundaries. Since these sets are convex in the associated coordinates, this will cause
the Laguerre cell associated to y; to be trapped in a lower-dimensional set, giving it zero
mass, which is a contradiction. The difference between the two proofs lies in quantifying
this estimate. In the discrete version of the estimate we do one of two things depending
on the sign of the inner product (W — V | V) (see proof of Proposition 4.5). When the
inner product (W — V, V) is negative, since |W| > ||V| and ||W — V|| has a positive
lower bound (by the condition (ND)), it can be seen that there is a cone whose axis is in
the direction of V and whose opening angle can be estimated from below, and the vector
W points to the outside of this cone. In the other case W — V and —V are, respectively,
outward normal vectors to the sublevel sets {—c(-, y;) + ¥ (y;) < —c(-, y;) + ¥ (y;)} and
{—cC,y) + ¥ (i) < —c(, yo) + ¥ (yo)}, viewed in coordinates given by exp;i. Thus
the lower transversality estimate (Proposition 4.2) can be applied to obtain a quantitative
bound, but at the price of involving the condition number since we have made a change of
coordinates. In the continuous version, there is no change of coordinates, instead we make
arotation to align V fj(po) and V f; (po), then estimate the error induced by this rotation
using (4.17), in a vein similar to calculations from [16, Remark 2.5, Proof of Lemma 4.7].

Proof of Proposition 4.8. Let us again write
Vv w
=— w:
VI Wi

and assume e,9 < ||V < W] and (v | w) > 0. Let us also define

V.= Vﬁ(po)v W= ij(l’()), v

xo := expy (po),  qo := —Dxc(x0, y0), g1 := —Dxc(x0, y)).
A quick calculation yields
q0 = [(Dexpy, lpo) 17! (=Vpe(exp§, (P), ¥0) | p=po)s
a1 =D exp§, 1)1~ (W) + qo.
Now we define
q" = [Dexps, 1py) 17 IV [Iw) + qo;

since | V|| < ||[W||, the above calculation implies that g lies on the line segment between
qo and g1 ; since (expfco)_l(A) is convex, we have g’ € (expfco)_l(A) as well.
Thus we can define

yi = expy, (g,
fi(p) 1= —c(exp$ (p), i) + c(exps, (), yo) + c(x0, ¥}) — c(x0, y0) + A,
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and by (4.17) applied with the choices x := exp§ (p), x" := xo, t = [[V[|/[W]|, and
qo, q1 as defined above, we will obtain, for all p € (expg,o)’1 (2),
fi(p) = xi < max{0, fi(p) — A;}, (4.19)
while another quick calculation yields
yi = exp$, ([(Dexps, [p)* 17 (V) + q0).

Now note that

|—c(expS, (p), ¥) 4 c(expS, (p), ¥l

< sup (D exp$, 1g)*(—=Dyc(x, exp§, (9)) |
(x,9)€R < ) =1(A
X,q)eQx (expg) ! (A) o
[ t@exps, 1) T AV IW = V)|

< CvCl, IVIw =V

’

where we have used the fact that if y = exp{ (¢), then (Dexpg l¢)* = D exp§|-p,c(x,y)-
As aresult we obtain

|/i(p) = fi(p)I* = |—c(exp$, (p), ¥)) + c(exp$, (p), y)I?
< (CyC2 )|V = IVIw|? = 2y 22 IVIA — (v | w))
< 2(CvCp)  (CexpCv) (1 — (v | w)).

exp

Combining this with (4.19) we then have, for any p € (expﬁo)_1 (2),

fi(p) = & <max{0, f;(p) — A} + V2C,C3/1— (v | w),

or after rearranging and using ||A || < Ty,

: — . _ 2
I—wlw> sp P max{SO,f](p)} 21)°

2
pe(exps,) (@) 2(C3,C3)?

(4.20)

We now make the following observation. Let us write X; := (exp; y~1(X). Then for
any 7, s > 0, we can estimate the volume of X; N {fy,y, < —t} N {fy;,, < —s} from
below by

HIXi O (fyo < =130 {fyy < —5))
= HIXi O (fro < 0N {fyyy < 0D = HUXG N {=t < frgy < 0D
—HIU(X; N {=s < fy. <OD.
Using L; C {fyy,y; = 0} N {fy;.y, <0}, we can bound the first term from below as
e

Hd(Xi n {fyo,yi = 0} N {fyj,y,- = 0}) = Cd—
Cxp”p”OO
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For the second term, by the coarea formula we can write

0
HUX: O {1t < froy < 0D < / A (p) dz
—t

1
./X,-m{fm,yﬁz} IV fyo.i (Pl
- tHI1BX)) - 1CaS HITH(9X)

&nd €nd

3

where to obtain the second line we have again used the fact that for every z € R the set
X; N{fy,,y; = z} is contained in the boundary of a convex subset of X;, in conjunction
with [21, Remark 5.2]. By a similar bound on the third term, we see that as long as

E€nd

2023 pllooHA (9 X)

max{t, s} <

we have
HUX O fyoy < =t} N {fy < —sP >0,

thus in particular (by continuity of fy, y; and fy, y,) there must exist a point p.. € X; for

which
£&nd

202 oo HET (3X)

maX{fyo,y,- (Pé% fyj,yi (Pé)} =<
Translating this back into coordinates in (expf))_l (X) and in terms of f;, fj, we see there
exists a point p, € (expg)_1 (X) for which

&€€nd
202 pllooHA (9 X)

fi(pe) —max{0, fj(pe)} =

Thus if Ty < 3CIT ||pii2d7-£§’l(3X) , then combining this with (4.20) we will obtain the
bound (4.18) as desired. m]

Remark 4.4. Under a set of standard conditions, we can obtain both (QC) and (4.17).
Let €2 and A be bounded and smooth domains in d-dimensional Riemannian manifolds
and take a cost ¢ € C*(Q x A). Also assume:

e ¢ satisfies the (Twist) condition: for every x € @, the map A > y — —Dyc(x,y)
is a diffeomorphism onto its image Ay := —D,c(x, A) C T;Q and we define the
c-exponential map exp$ : Ay — A by exp$ = (=Dyc(x, NL

e the cost ¢*(x, y) := c(y, x) satisfies the (Twist) condition: for every y € A, we can
define the c*-exponential map exp{ : 2y — €2 on the set 2y := —D,c(Q, y) C T)'A
by exp$ = (=Dyc(-, ).

o (exp$)~!(A) is convex for each x € Q.

o (expf)*1 () is convex for each y € A.

e detD2 c(x,y) # Oforall (x,y) € 2 x A.
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e Forany (x,y) € @ x Aandn € TfQ, V € T,Q with n(V) = 0,
_(Cij,pq - Cij,rcr’scs,pq)cp’kcq’[Vianknl > 0; (A3w)

here indices before a comma are derivatives on §2 and after a comma on A, for fixed
coordinate systems, and a pair of raised indices denotes the inverse of a matrix. This
last condition (A3w) originates (in a stronger version) in [26] related to regularity of
optimal transport. [23, Theorem 3.2] in the Euclidean case and [20, Theorem 4.10] in the
general manifold case show the above conditions imply (QC) and (4.17). In fact, they are
equivalent as seen in [23]. This geometric interpretation is a key ingredient in showing
regularity in the optimal transport problem in the vein of Caffarelli’s classical work [7]
(see [13, 16]).

5. Strong concavity of Kantorovich’s functional

In this section we establish the strong concavity of Kantorovich’s functional ® over some
suitable domain of RY . As explained in the introduction, @ is invariant under addition of a
constant, so we must restrict ourselves to the orthogonal complement Ey of the space of
constant functions. Moreover, we will consider the set ¢ defined by (4.1), which can be
thought of as the space of strictly c-concave functions. Recall that the conditions (Reg),
(Twist), (QC), and (PW) are defined in the introduction, on pages 2604, 2605, 2608, and
2609 respectively.

Theorem 5.1. Assume (Reg), (Twist), and (QC). Let X be a compact, c-convex subset
of @, and p be a continuous probability density on X satisfying (PW). Then

Yy € K&, Vv e Ey, (D*®W)v|v) <—C-&vl|?,

where C is a positive constant defined in (5.9), and depends on || p|| co, ’Hg_l (0X), and
Cexp, Cv, and &gy, from Remark 4.1.

Remark 5.1. Note that the upper bound on the largest non-zero eigenvalue of D?>® (1)
decreases as N grows to infinity, since ¢ is of the order of 1/N. A possible place for
improvement is the reverse isoperimetric inequality stated in (5.6). Currently, we are vastly
overestimating the size of the boundary of a Laguerre cell by bounding it by the area of
the boundary of the whole domain; additionally we are bounding the density p by its
supremum, and paying in terms of the constant Cexp,. Note that (5.6) in its current form
can never turn into equality, even for constant density p and the quadratic cost function
where Cexp = 1, as equality would only happen for a Laguerre cell that occupied the whole
domain X, which cannot happen as all Laguerre cells have non-zero mass. To improve
the inequality, one could try to control the anisotropy of Laguerre cells and bound the
area of the boundary of a cell by some fraction of the area of 9 X; however, this would
require assumptions on the distribution of the points ¥ and on v € P(Y). We believe
that such an upper bound on the anisotropy of Laguerre cells would be interesting in
itself, and heuristically seems feasible as a discrete analogue of the regularity results
for optimal transport (interpreting the Laguerre cells associated to ¥ : ¥ — R as the
c*-subdifferentials of ).
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Remark 5.2. Note that unlike the domain X, the support of the density p need not be
c-convex. In Appendix A we provide an example of a radial measure on R? whose support
is an annulus (hence is not simply connected) but whose Poincaré—Wirtinger constant Cpy,
is nonetheless positive.

The end of the section is devoted to the proof of Theorem 5.1. It relies on the fact that
—D?® (1) can be regarded as the Laplacian matrix of a weighted graph on Y, whose
first non-zero eigenvalue can be controlled from below using the Cheeger constant of
the weighted graph. In turn, this weighted Cheeger constant can be controlled using the
Poincaré—Wirtinger inequality.

5.1. Poincaré inequality and continuous Cheeger constant

We start by proving that the finiteness of the Poincaré—Wirtinger constant of the weighted
domain (X, p) implies the positivity of the weighted Cheeger constant, defined in (5.1).
Below, a Lipschitz domain is the closure of an open set with Lipschitz boundary.

Lemma 5.2. Assume (QC) and that X is compact and c-convex. Then

(i) X is a Lipschitz domain,
(i) foranyy e Kt andyinY, Lag, () N X is a Lipschitz domain.

Proof. By assumption, for any y € Y one can write X = exp{ (Xy) where X is a bounded
convex subset of R? which must have non-empty interior since it supports an absolutely
continuous probability measure. Moreover, the map expy is a diffeomorphism, hence is
bi-Lipschitz. This implies (i), while (ii) follows from exactly the same arguments, where
we have to remember that ,o(Lagy W) > 0. ]

Given a Lipschitz domain A of X we write, slightly abusing notation,
19A], ::/ p(x)dHI ™ (x) and |Al, ::/p(x)dH;f(x).
dANint(X) A

Lemma 5.3. Let X be a compact domain in Q and let p in C°(X) be a probability density
with finite Poincaré-Wirtinger constant Cpy. Then the weighted Cheeger constant of
(X, p) is positive, that is,

dA 2
h(p) := inf 194, >

| .2 (5.1)
Acx min(|Al,, X\ Alp) — Cpw

where the infimum is taken over Lipschitz domains A C int(X) whose boundary has finite
Hg_l -measure.

The proof is based on properties of functions with bounded variation. For more details
on this topic, we refer the reader to [4]. Although the discussion there is on Euclidean
spaces, the relevant results easily extend to the Riemannian case, as exp serves as a global
coordinate system on all of €2.
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Proof of Lemma 5.3. Let A be a Lipschitz domain in int(X). Since A has a Lipschitz
boundary with finite area, its indicator function x4 has bounded variation in int(X). By
the density theorem [4, Theorem 10.1.2], there exists a sequence of C! functions fn on
int(X) that converges to x4 in the sense of intermediate convergence (whose definition is
not important here). By (PW),

I fn — Ep(fn)”Ll(p) = pr”an”Ll(p)‘

Since intermediate convergence is stronger than L' convergence, the continuity of p
implies

1im L fo = Ep (il = 1 = EpOtadllzig = 211X \ Al

Note that we have used the fact that p is a probability measure, i.e. p(X) = 1. Proposi-
tion 10.1.2 of [4] implies that the total variation measure |D f;,| narrowly converges to
D x4, which together with the continuity of p implies that f o IDfulp d?-lg converges to

Jo DxalpdHE = |3 A|,. The relation [D f,| = ||V f, [l d#J then gives
Jim 1V full 1) < 10 AL

Combining the previous equations leads to the desired inequality. O

5.2. Cheeger constant of a graph

The goal of this section is to give a lower bound of the second eigenvalue of —D?® ()
in terms of the Cheeger constant of the weighted graph induced by this matrix. An
unoriented weighted graph can always be represented by its adjacency matrix (wyz) y ;)ey2;
a symmetric matrix with zero diagonal entries. We introduce a few definitions from graph
theory, following the conventions of [14].

Definition S.1. Let (wy:)(, ,)cy2 be a weighted graph over Y. The (weighted) degree of a
vertex y is dy 1= Zz#y wy. The (weighted) Laplacian is the matrix (Lyz)(, ;)cy2 Whose
entries are Ly, = —wy, fory # zand Ly, = d,.

Definition 5.2. The Cheeger constant of a weighted graph (Wyz) (y,7)ey2 OVer a point set ¥

is given by

) [0S ]w
h(w) := min — )
scy min(| S|y, |Y \ Slw)

0Sly = Y wy and S|y =) dy.

yes, z¢S yes

where

The (weighted) Cheeger inequality bounds from below the first non-zero eigenvalue of
the Laplacian of a weighted graph, denoted A(w), in terms of its Cheeger constant and
its minimal degree. The formulation we use can be deduced from [14, Corollary 2.2] and
from the inequality 1 — /1 — x2 > x%/2.

Theorem 5.4 (Cheeger inequality). A(w) > % h%(w) - minyey dy.

We now proceed to the proof of the main theorem of this section.
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5.3. Proof of Theorem 5.1

Let ¢ be a function in K and consider the weighted graph (wy;), .)ey2 given by

o p(x) i1
Wy, i= ———— () = / dHS ™ (x)
== Tarer, Y Lag, . IDxe(x, y) = Dyc(r, 2)llg ¢

for y # z in Y, and with zero diagonal entries (wyy, = 0). In the formula above, we
use the notation Lag, () = Lag,(¥) N Lag (V) for the facet between two Laguerre
cells. By construction, the Laplacian matrix of this weighted graph is the Hessian matrix
—D?® (), so that Theorem 5.4 directly gives us a lower bound on the first non-zero
eigenvalue of —D?® (). To complete the proof, we need to bound the Cheeger constant
and the minimum degree of the graph w from below.

Step 1. The goal here is to bound from below the discrete Cheeger constant h(w) in terms
of the continuous weighted Cheeger constant h(p) and the constants introduced in (4.2).
By definition of the constants &, and Cy, for any y # z in ¥ one has

EtwWyz = |Lagy,z(w)|p =< ZCwaz- (5.2)

Consider a subset S of Y, and let A = Uye s Lagy (). Then the intersection of the
boundary of A with X is contained in a union of facets of Laguerre cells, namely

dAninX) < | ) Lag, (¥). (5.3)
yeS, z&S ’

The two inequalities (5.2) and (5.3) imply a lower bound on the numerator of the Cheeger
constant:

[0A], < Z |ILag, . (¥)p =2Cv|0S]w. (5.4)
yeS, z&S

‘We now need to bound the denominator of the Cheeger constant from above, which requires
controlling the weighted degrees dy. Note that

1 1
dy = wy. < — > |Lag, (¥)l, < o0 Lag, (V). (5.5)

&
£y W oz#y

where the second inequality comes from the fact that the facets Lag,, . () form a partition
of the boundary d Lag, () N int(X) up to an Hg_l-negligible set. To see that fact, it
suffices to remark that in the exponential chart of y, the intersection of two distinct facets
adjacent to y has a finite Hg_z-measure, as implied by Proposition 3.2.

In order to apply the (continuous) Cheeger inequality, we need to replace the weighted
area of the boundaries of Laguerre cells in (5.5) by the weighted volume of the cells. We
have

M (9 Lag, () < Co HT (exp) ™' 9 Lag,, ()
< caHITN@X,) < 24D X)),

exp exp
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The first and third inequalities use the definition of the bi-Lipschitz constant Ceyp of
the exponential map, while the second inequality uses the monotonicity of the H¢ -
measure of the boundary of a convex set with respect to inclusion (see [32, p. 211]). By the
assumption |Lag, (¥)|, > ¢, this gives us a (rather crude) reverse isoperimetric inequality

0 Lag, (V)] < llollo i (3 Lag, (¥))

1oloo 21y a—
= LU H @0 ILag, (D). (5.6)

exp

We remark here that the above inequality is never sharp (see also Remark 5.1). Combining
(5.5),(5.6) and |A|, = ZyeS [Lag, (¥)], we obtain

2(d—1 _
s UM (0X)

1 llpllocC
ISl =D _dy < —

yeS

|Alp-
Etw

The same inequality holds for the complement | X \ S|. We combine the previous inequality
with (5.4) and with Lemma 5.3 to get a lower bound on the Cheeger constant:
Etw€

h(w) > —— .
Cold Dy HIT D X)11plloo Cow

(5.7

Note that in order to apply Lemma 5.3 we implicitly used the fact that A is a Lipschitz
domain (as a finite union of Lipschitz domains, see Lemma 5.2) whose boundary has finite
Hd~"-measure (by (5.6)).

Step 2. In order to apply the Cheeger inequality, we still need to bound from below the
weighted degree dy. By (5.2) one has, in view of the crucial fact that |9 Lagy(w) o is the
measure of 0 Lag,(y) N int(X),

1 1
dy = wyz 5= ) Ilag, (Wl = 510 Lag, (D).
Z#y Z#y

Taking A = Lag,(y) in the definition of the weighted Cheeger constant h(p) in Lem-
ma 5.3, one gets

|9 Lag, ()], = h(p) min(|Lag, (¥)],, X \ Lag,(¥),) = h(p)e.

The last inequality comes from the assumption that each Laguerre cell has a mass greater
than ¢ and that X \ Lag, () also contains a Laguerre cell (except for the trivial case where
Y is a singleton). We deduce

(5.8)
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Step 3. Combining the Cheeger inequality with (5.7) and (5.8) we have A(w) > Ce?

where
2

Etw
= — . (59)
2047V 3 (M (0X))2)1p )12, C3

00 - pW

Since the graph induced by the Hessian is connected, the kernel of —D?® (/) is equal
to the space of constant functions over Y, implying that Ker(—D?®(y/)) = Ey. Then,
using the variational characterization of the first non-zero eigenvalue of the Laplacian
matrix, we get

(-D*®(¥) | v)

Ce’ < A(w) = min ————>——". O
veEy Il

6. Convergence of the damped Newton algorithm

The goal of this section is to show the convergence of the damped Newton algorithm
for semi-discrete optimal transport. This follows in fact from a more general result. We
establish in Section 6.1 the convergence of the damped Newton algorithm (Algorithm 1)
under general assumptions on the functional. We finally apply this algorithm to the semi-
discrete optimal transport problem, using the intermediate results (regularity and strict
concavity of the Kantorovich functional) proven in Sections 4 and 5.

6.1. General damped Newton algorithm

Recall that Y is a finite set and we denote by R the space of real functions on Y. We
consider P(Y), the space of probability measures on Y, as a subset of RY. Finally, we
denote by Ey the space of functions on Y that sum to zero. In this section, we show that
Algorithm 1 can be used to solve non-linear equations G (¥) = u where u € P(Y) and
the map G : RY — P(Y) satisfies some regularity and monotonicity assumptions.

Proposition 6.1. Let G be a functional from RY to P(Y) which is invariant under addition
of a constant. Let G(Y) = Zer Gy(¥)1, and

Kf={y eR" |VyeY, Gy(y) = ¢},

and assume that G has the following properties:

(i) (Regularity) For every positive &, G is C1% on K¢. Let L, be the smallest constant
such that

IG@) —GW)Il | IDG(p) —DGW)II _
llo =l llo —vi1* -

(i) (Uniform monotonicity) For every ¢ > 0, there exists a positive constant ks such that
G is kg-uniformly monotone on K¢ N Ey:

Vo # € K7,

£

Vi € K8, Vv € Ey,  (v|DG¥)v) > ke [v]>.
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Now, let u € P(Y) and let Yo be a function on Y such that the constant g defined in
(1.6) is positive. Set k := min(ke,/2, 1) and L := max(Lg /2, 1). Then the iterates () of
Algorithm 1 satisfy

1GWit1) — pll = (1 =T /2DNG W) — pll,  where

Kl—i—l/ag
Ty = mi , 1. 6.1
o m%wmﬂwmww—M|) -

In addition, as soon as T, = 1 one has

L|G — e
L

In particular, the damped Newton algorithm converges globally with linear speed and
locally with superlinear speed (quadratic speed if o = 1).

Proof. We set e := g9, L := max(Lg/2, 1) and « := min(k,,2, 1). First, we remark that
for every ¥ € K?/2, the pseudo-inverse DG (1) maps the subspace Ey to itself. The
uniform monotonicity of G therefore implies that |DG* ()| < 1/k, where || - || is the
operator norm on RY .

We start by the analysis of a single iteration of the algorithm. We let ¢ := v € K¢,
define v := DG(¥) T (G(¥) — ) and ¥, := ¥ — tv. Since the pseudo-inverse DG ()
is 1/k-Lipschitz, one has ||v|| < ||G(¥) — w||/«x. Now let 1 be the largest time before the
curve V¥, leaves K/2. In particular, Yy, lies at the boundary of KC¢/2, meaning that there
must exist a point y in ¥ such that G, (¥¢;) = &/2. This implies that |G (¥¢)) — G() ||
> ¢/2, and using the Lipschitz bound on G we obtain a lower bound on 7;:

€ Lt
5 = 1GWr) — G < Lulv]l < THG(W) =l

This implies that 77 is necessarily larger than x¢/(2L||G(¢) — p||). We have now estab-
lished that the curve T — ¥, remains in ¢/? before time 71, implying that the function
[0, 71] > T — G () is uniformly C%. Applying Taylor’s formula we get

G(r) = G(¥ —tDGW)T(GW) —w) = (1 = OGW) + T+ R(x),  (6.2)

where, on account of v = DG(¥)*(G(¥) — 1) and the a-Hélder property for DG,

IR(D)| = H/o (DG (Vo) —DG(Y))vdo

1
S L .L_Ot+1||v||0(+l S L”G(w) _ /"L” +ar1+0[.
o+ 1 i1t

6.3)

For every y € Y, using uy > 2¢ (by (1.6)) and G () > ¢, one gets

Gy(Wo) 2 1 =D)Gy() + Ty + Ry(7) = (1 + 7)e — [|R(T)].
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If 7 is chosen such that || R(t)|| < t& we will have G (1/;) > ¢ for all y in ¥ and therefore
Y. will belong to KC¢. Thanks to our estimate on R(t) this will be true provided that

ol H1/agl/a )

T<17):= min(rl,
LY G () — p|1H1/e

Finally, we establish the second inequality required by Step 2 of the algorithm. To do that,
we subtract i from both sides in (6.2) to obtain

GWo) —p=010-1)(GH) — )+ R(D). (6.4)

In order to get |G (Y;) — |l < (1 — 7/2)||G(¥) — p]l, it is sufficient to establish that
IR(T)|| < t/2||G() — p]|. Using the estimation on || R(7)| again, we see that it suffices

to take
K1+l/a
T <13:= min<r2, , 1).
LY G(y) — w2/

Finally, using L > 1, x < 1l and ||G(¥) — || < d (since G(¢) and p are probability
measures), we can establish that 3 > Ty where Ty is defined in (6.1). This ensures the
first estimate on the improvement of the error between two successive steps.

By this estimate, there exists ko such that 7; = 1 for k > ko. Then one can use (6.4) to
get |G (Yr41) — 1]l < [|R(7)]|. We obtain the second estimate of the theorem by plugging
in (6.3). o

6.2. Proof of Theorem 1.5

Proposition 6.1 can be directly applied to the gradient of the Kantorovich functional, or
more precisely to

G(W) =) p(Lag,(¥)1, = VoY) + .

yeY

In that case, the set ¢ is given by
K®={y eR" | Vy €Y, p(Lag,(¥)) = &}.

We have assumed that the probability density p is in C%%(X) where X is a c-convex,
compact subset of 2. Then, by Theorem 4.1, for any ¢ > 0, the map G is uniformly
C!¥ over KC?. This ensures that the (Regularity) condition of Proposition 6.1 is satisfied.
Furthermore, since we have also assumed that p satisfies a weighted Poincaré—Wirtinger
inequality, we can apply Theorem 5.1 to see that the (Uniform monotonicity) hypothesis
of Proposition 6.1 is also satisfied. Applying Proposition 6.1, we deduce the desired
convergence rates for Algorithm 1.
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6.3. Numerical results

We conclude the article with a numerical illustration of this algorithm, for the cost
c(x,y) = |lx — y||* and for a piecewise-linear density. The source density is piecewise-
linear over a triangulation of [0, 3] with 18 triangles (displayed in Figure 3). It takes value 1
on the boundary [0, 3]> and vanishes on the square [1, 2]%. In particular, the support of
this density is not simply connected and not convex. The target measure is uniform over a

p=1

Fig. 3. Evolution of Laguerre cells during the execution of the damped Newton algorithm for
semi-discrete optimal transport. Top: The source density p is piecewise linear over the domain

X = [0, 3] over the displayed triangulation: it takes value 1 on the boundary of the square [0, 3)?

and 0 on the boundary of [1, 2]2. The target measure is uniform over a 302 uniform grid in [0, 1]2.
Bottom: Laguerre cells at steps k = 0, 2, 6,9, 12, 15, 18, 21 and 25.



2640 Jun Kitagawa et al.

uniform grid anl{O, ...,n — 1}?. Figure 3 displays the iterates of the Newton algorithm,
which in this case takes 25 iterations to solve the optimal transport problem with an error
equal to the numerical precision of the machine. The source code of this algorithm is
publicly available.'

We finally note that recent progress in computational geometry would allow one to
implement Algorithm 1 for the quadratic cost on R3, refining [22] or [12]. It should also be
possible to deal with optimal transport problems arising from geometric optics, such as the
far-field reflector problem [10], whose associated cost satisfies the Ma—Trudinger—Wang
condition [24].

Appendix A. A weighted Poincaré-Wirtinger inequality

In this section, we provide an (almost) explicit example of a probability density on R?
whose support is an annulus, therefore not simply connected, but which still satisfies a
weighted Poincaré—Wirtinger inequality.

Proposition A.1. Let 0 < r < R and assume that o € C°([0, R)) is a probability density
with p = 0on [0, r] and p concave on [r, R]. Consider
! - d
p(x) = ——————p(lxl) over X :=B(0, R) € R%,
x4~ wa—1
where wg_1 is the volume of the unit sphere S*=1. Then p satisfies the weighted Poincaré—
Wirtinger inequality (PW) for some positive constant.

The proof relies on two L'-Poincaré—Wirtinger inequalities. The first inequality is the
usual Poincaré-Wirtinger inequality on the sphere: given a C! function f on S~!, and
Fy1 = (1/w4-1) Jgar f(2)dz,

fs @ = FaaldHT @) < e fs L IVF@IdHT @) (A1)

for some positive constant ¢;. The second inequality is a Poincaré-Wirtinger inequality
on the interval [0, R] weighted by p. Given a function f in C'([0, R)), and letting F1 :=

foR fr)pr)dr/ fOR o(r) dr, we have

R R
/0 lf(r) = Fi[p(r)dr < c5 fo 7 ()[B(r) dr (A2)

for some positive constant ¢ depending only on o, as can be deduced from [3, Theo-
rem 2.1] and from the concavity of p on [r, R].

1 https://github.com/mrgt/PyMongeAmpere.
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Proof of Proposition A.1. We now proceed to the proof of the Poincaré—Wirtinger inequal-
ity for (X, p). Let f : B(0, R) — R be a function of class C'. By using polar coordinates
and the definition of p, one has

F:= / Fx)px)dH (x)
B(0,R)

R 1 R
= [ [ rermant@a = [Fwme
0 Sd_](r) 0

wq—1r

where f(r) is the mean value of f over the sphere S~ (r),

— 1 d—1 1 d—1
f)=——773 / fR)dH™ (2) = —/ frz)dH " (2).
r Sd—l(r) Wd—1 Jsd-1

Wd—1

Using the triangle inequality and the relation between p and p we get

R
/ If(x)—Flp(x)dH”’(x)=// @) = Flo() dH () dr
B(0,R) 0 Jsi-1()

R R —
</ z(r>|?(r>—F|dr+/ PO
0 0o r

Wd—1

/ 1f@ = FOIdH ™ (2) dr.(A3)
S9=1(r)

We first deal with the second term on the right-hand side. Using the Poincaré—Wirtinger
inequality (A.1) on the sphere, we have

f If(z) — F)IdH ™ 2) < ca f IV @) dH ™ (2),
Sd‘l(r) d=1(r)

where V f(z)|,1 is the orthogonal projection of the gradient on the tangent plane {z}+, so
that

0 F)dH(2) < \V/ an
0 Sdfl(r) |f(Z) - f(r)l (Z) = Cq ” f(-x)|xl ”p(x) (x)

rd=lwg_ B(0,r) (A4)

By the calculation of F above, we see that F is also the mean value of f weighted by .
We can therefore control the first term of the upper bound of (A.3) using the Poincaré—
Wirtinger inequality (A.2) on the interval:

R R
/O p(OIf(r) — Fldr < Cﬁfo 17 (1B dr.
Now, notice that

fetm—fo) _ .1 f(r+m)z) = f(r2)
h © h—>0 wq—1 Jgd-1 h

7o) = lim A1 (2),
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from which we deduce

17 o)

IA

(rz)
wdl

‘ dH(2)
zwd 1rd I/d L(r)

:
r
Integrating this inequality shows that

R_ = R 2@
p(ONFr) = Fldr <cp | ————
0 0 wWqd—1r Sdfl(r)

=cp f < [ >’p<x>d%d(x> (A.5)
B(O,R) [l I

From the simple inequality (a + b)?> < 2(a® + b?), we get

dH (7).

<Vf(z)

<Vf(z) ’ §>‘ dHI1(2)

X
'<Vf(x) ‘ m» + VO] = V2IVF@I.
Using the bounds (A.4) and (A.5) in (A.3), we get the desired inequality:

/ |f(x) = Flp(x) dH (x) < V2(ca + cp) / IVF@)lpx)dHY(x). o
B(0,R) B(0,R)

Appendix B. Proof of Theorem 3.1

B.1. Existence of partial derivatives

Without loss of generality, we assume that Ao = 0. We start the proof of Theorem 3.1 by
showing the existence of partial derivatives of the map G. In this section, we denote by
e1, ..., ey the canonical basis of RY. We start by rewriting the finite difference defining
the partial derivative of G in direction e; using the coarea formula. Fix ||A|| < T. For
t > 0, one has

1 - ~ 1
;(G(X—i—tei) -GQ)) = ;f

1 Ai+t
plx) dH (x) = - / g(s)ds, (B.D)
K (v+te)\K (A) Sy

where the function ¢ is defined by

~ /3()5) d—1
= ————dH . B.2
80 /ﬂ_/#i Ko g ) IV i@l © 2

The same reasoning also holds for # < 0. We now claim that g is continuous on some
interval around A;, which by (B.1) and the Fundamental Theorem of Calculus will imply
that the limit as # — 0 of (B.1) exists and is equal to g()), thus establishing the formula
(3.3). The continuity of g follows from the next proposition, which is formulated in a
slightly more general way.
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Proposition B.1. Let o be a continuous non-negative function on X and let » be the
modulus of continuity of o. Given any vector A in RN with | A < Ty, consider the
function

h:R>s > o(x)dH (),
LNS;

where L := ﬂj# K;(Aj) and Ss = fl._l(s). Then h is uniformly continuous on [— Ty, Ttr)
and has modulus of continuity

wp(8) = Cy - (w(C28) + 1)), (B.3)
where the constants only depend on || fi 1.1, diam(f(), &nd, € and |0 || so-

Taking o = p/||V f;|l in the previous proposition, which is continuous using the non-
degeneracy condition (ND) and the assumption f; € C!:! (X ), we see that the function g
defined by (B.2) is continuous. This implies the existence of partial derivatives and estab-
lishes formula (3.3). The proof of Proposition B.1 requires the following lemma.

Lemma B.2. Assume that the functions f; : X > R satisfy (ND). Then, for every
iel{l,..., N}, there existsamap ; : X x R — RY such that:

(i) For any (x,t) in X x R such that the curve ®; (x, [0, t]) remains in )A( one has
[i(@i(x, 1) = fio) +1.
(ii) Forallx,y € X andt € R,
[|P;(x, 1) — @i (x, )| < |t — s|/énd, (B.4)
|D;(x, 1) — @i (y, Dl < exp(Colthllx — yll, (B.5)

where Cop 1= 3CL/8§d.

Proof. We consider the vector field Vl.0 x) = VLiX)/IV filx) ||2 on )A(, which satisfies
| Vl.0||OO < 1/epq and whose Lipschitz constant is bounded by C¢. This vector field is
extended to R using the orthogonal projection on X, denoted Py

Vi e R, Vi) = VY(pg ().

By convexity of X, the map py is 1-Lipschitz. This implies that the Lipschitz constant of
V; is also bounded by C¢. We let ®; be the flow induced by this vector field, which exists
for all time since V; is bounded and uniformly Lipschitz on all of R?. The inequality (B.4)
follows from the definition of integral curves and the bound on || V;||. Any integral curve
y 1 [0, T] — R? of V; which remains in X satisfies

t
fily(®) = fi(y (0)) +f0 (') | Vfily(s)ds

1
= fi(y(0)) +/0 (Vily ) |V fi(y (s))) ds = fi(y(0)) +1,
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thus establishing (i). The inequality (B.5) follows from the bound on the Lipschitz constant
of V; and from Gronwall’s lemma. ]

Proof of Proposition B.1. Lett, s be small enough so that the transversality condition (T)
holds (that is, ¢, s € [Ty, Tir]). We assume that ¢ < s in order to fix the signs of some
expressions. We consider the following partition of the facet S; N L, whose geometric
meaning is illustrated in Figure 4:

At Z{x GS,ﬂL | q>l(-x7[05s_t]) EL},
Bi={xeSNL|3uel0,s—1), Pj(x,u) € dL}.

Similarly, we define
As={xeSNL|®ix,[t—s,0]) C L}
By;={xeSNL|3Jue(t—s0] &(x,u) dl}.

Recall that by definition,
h() =f o (x)dH ™ (x) +/ o (x)dH (x), (B.6)

A;

B,

where the integral is with respect to the (d — 1)-dimensional Hausdorff measure. Our
strategy to show the continuity of 4 is to prove that the first terms in the sums defining
h(t) and h(s) in (B.6) are close, namely

<C3-(Is—11+o(Cls —1])), (BT

/a(x)dH"*l(x)—/ o (x)dH ™ (x)
A, ‘

Ay

Fig. 4. Illustration of the proof of Proposition B.1.
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and then that the terms involving By, B, are small (recall that both sets depend on ¢ and s):

lo ()] dH ™ (x) + / lo ()| dHI ™ (x) < C4 - |s —11. (B.8)
B; By

The combination of the estimates (B.7) and (B.8) implies the desired inequality (B.3).
We now turn to the proof of these esAtimates, and that the constants C3 and C4 in these
estimates depend on || f; |11, diam(X), eng, & and ||o || co.

Proof of (B.7). By Lemma B.2(i), for any point x in A; one has f; (®;(x,s — 1)) = s, so
that the map F(x) := ®;(x, s — t) induces a bijection between the sets A; and A;. As a
consequence of (B.5), the restriction of F to A; is a bi-Lipschitz bijection between the sets
Ay and Ay, with Lipschitz constant
max{|| F " ILipta)s I FllLipca,)} < exp(Cals — t]).

Using a Lipschitz change of variable formula, we get

/ o (x) dH ™ (x) =/ o (x)dH ™ (x)

A

F=1(A)

<1t [ o @)@t

< exp(Co(d — s —z|)f oc(F ') dH4'(x).  (B.9)

Ag

By definition of the modulus of continuity and thanks to (B.4),

lo(F~1(x)) — o (x)] < w(|F~ (x) — x]|)
= o(|®(x,s —1) — x|) < o(ls — t]/ena)-

Integrating this inequality, we get

f o(F7 1) dH ™ (x) < / o (x) dHI " (x) + HE V(Ao (s — t]/€na)
AS

As

5/ o () dH ) + H (X)) w(|s — t]/ena),  (B.10)
Ay

where the second inequality uses the monotonicity of the (d — 1)-dimensional Hausdorff
measure of the boundary of a convex set with respect to inclusion (see [32, p. 211]).
Combining (B.9) and (B.10) we get

/J(X)d'Hd_l(x)
Ay
<exp(Co(d — s — t|)</ o (x) dH ) + HIT (K)o (Is — r|/end)>,

N
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so that

/ o (x) dH () —f o(x) dH ™ (x)
" b (exp(Co(d — Dis — 1) — 1)[lo [l (X)
+exp(Co(d — DIs — ) H ™ X (ls — 1]/0)
< C3-(Is —tl + o(s — t]/ena)).

where the constant C3 depends on Cp, &ngd, €1, ||0 ||co and diam(f( ). Exchanging the roles
of s and ¢ completes the proof of (B.7).

Proof of (B.8). By definition, for every point x in the set B, the curve ®;(x, [0, s — t])
must cross the boundary of L at some point, so that

u(x) :=min{v € [0,s — 1] | ®;(x,v) € AL}

is well defined. We write P (x) := ®;(x, u(x)) for the corresponding point on the bound-
ary of L. By definition of u(x), the curve ®(x, [0, u(x)]) is included in L, so that by
Lemma B.2(i) we have f;(P(x)) =t + u(x). This shows

P(B;) CA:=0LnN fi_l([t, s]). B.11)

‘We now prove that the map P satisfies a reverse-Lipschitz inequality. Note that for any
point x in By,
x = ®;(P(x), —u(x)) = ®;(P(x), 1 — fi(P(x))).

Using the bounds (B.5) and (B.4), we find that for any x, y in B;,

lx =yl < 1P;i(P(x), 1 — fi(P(x))) — ®i(P(y), 1 — fi( PO
< [Pi(P(x), t — fi(P(x))) — Pi(P(y), t — fi(P(x)))]
F+ P (P(y). t — fi(P(x)) — Pi(P(y), t — fi(P(Y))I
= exp(CoTw) | P(x) = PO + | fi(P(x)) — fi(P(¥)]/€nd
< C'IIP(x) = PO,
where C" := exp(Co) + Cr/eng; we have used the fact that Ty < 1. We can now bound

the (d — 1)-Hausdorff measure of B; in terms of that of A using this Lipschitz bound and
the inclusion (B.11):

HITVB,) < HITU (PP (BY))) < CIHIT(A). (B.12)

What remains to be done is to prove that the (d — 1)-Hausdorff measure of A behaves like
O(|s — t|), and this is where the transversality condition will enter.
Let us write

_ e, g#o
T lexnaL, j=o.
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Then 3L can be partitioned (up to an H¢~!-negligible set) into faces dL = U iz (F;NL)
and using the coarea formula on each of the facets we get (writing B := fi_1 [z, s])

HITY A =) HITY BN (FNL) = / dmi!
(W)=Y H"NBNENL) =) - (x)

J# J#
s 1
= Z/ / — dH*2(x) du, (B.13)
J#i t Mﬂ(E/'ﬂL) Jlj(-x)

where J;;(x) is the Jacobian of the restriction of f; to the hypersurface F;. More precisely,

V fi(x)

Jij(x) = HVfi(X) - <Vfi(x) ‘ ij(X)>m if j #0,4,

and
Jio(x) = [IVfi(x) = (V fi(x) | vo(x))vo(x) I,

where vo(Ax) € J\/})A( is a unit vector. Since X is convex, for H? l-ae. x € 93X the normal
cone NV, X consists of only one direction, thus for such x there is a unique choice of vy (x).
Let us write v; = V f;(x)/|IV fi ()|l and v; for either V f;(x)/||V fj (X)| or vo(x); we
then have, using (T),
T ) = IV i) llvi = (vi | v |1?
> VAP = (v | v))?) = epger (B.14)

tre

Combining (B.13) and (B.14) gives

HIN () < ! Z/‘Y HI2(S, N (F; N L)) du

End€tr i t
1 : d—2
= H (S, NoL)du. (B.15)
Endétr Jy

By definition, a point belongs to the intersection S, N dL if it lies in the singularity set
Y (A(u)), where A(u) = (A1, ..., Ai—1, U4, Aji+1, ..., An). By Lemma 3.2,

HY2(S, NIL) < HI 2 (Z(A())) < C(d diam(f())i (B.16)
“ - - & '

Combining (B.12), (B.15) and (B.16) we obtain He(B,) < C|t — s|, which implies (B.8)
by the boundedness of o. O

B.2. Continuity of partial derivatives

We prove that the function G defined in (3.1) is continuously differentiable by controlling
the modulus of continuity of its partial derivatives given in (3.3). Again, we start with a
slightly more general proposition.
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Proposition B.3. Let o be a continuous function on X with modulus of continuity w and
i €{l,..., N}. Consider the following function on the cube Q := [—Tx, TV :

HQ) = / o (x) dH ™ (x).
KNS 04)

Then H is uniformly continuous on Q with modulus of continuity
whH(8) = C1 - (w(C26) + [8]),

where the constants only depend on || f; ”Cl-l(ff)’ diam()?), &nd, Etr, and |0 || co-

Proof. Proposition B.1 implies that the function H is uniformly continuous with respect to
changes of the ith variable. Let us now consider variations with respect to the jth variable
with j # i by introducing

hi[=Ty, Tyl 35 > o (x) dH ! (x)
Koo 1S A e AN )

for some fixed A € [T, Tir]V. We can rewrite the difference between two values of
h using the coarea formula. As before, we assume s > ¢ to fix the signs and introduce
L' := X NNy j) KeOu) and S := f;7' (1;). We have

h(s) = h(t) = / o () dH ™ () — f o (x) dH " (x)
L'NK;(s)NS L'OK: (NS

; o) ia
/t /;,/ﬁSﬁfjl(u) J,](x)

where the Jacobian factor J;; is no less than gygey from (B.14). Therefore,

IS

h(s) 5h(t)+ Hd 2wnsn f~w)du. (B.17)

End€tr Jr

Just as in the proof of Proposition B.1, the set L N S N £~ (u) is included in the set
XA, Ao, U Ajy e AN). Thus, by Lemma 3.2,

cd, X)

tr

HI2(L NSO f w) <

(B.18)

Combining (B.17) and (B.18) we can see that the function / is Lipschitz with constant

lolloo

End Str

Cn:=Cd,X)
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Finally,

N
[H() = HOI < Y THO o ket oo i) — HOL o A g1 )]
j=1
< on(li = 4l + Y Culwj — Al
J#
< op(lie = Mloo) + (N = DChllt = Alloo,

where w), is the modulus of continuity defined in Proposition B.1. This establishes the
uniform continuity of the function H, with the desired modulus of continuity. O

B.3. Proof of Theorem 3.1

Proposition B.1 shows that the partial derivative G with respect to the variable A; exists
and is given by (B.2). Applying Proposition B.3 with o (x) = 6(x)/||V f; (x)||, we obtain
CO« regularity for each of the partial derivatives of G on the cube 0 = [Ty, Tyl from
the C%¢ regularity of 5. Moreover, the C** constant of each partial derivative over Q is
controlled by

C(diam(X), end, &, IV fileri x) 18llcow x))-

Acknowledgments. JK acknowledges the support of National Science Foundation grant DMS-
1700094. QM and BT would like to acknowledge the support of the French ANR through the
grant ANR-16-CE40-0014 (MAGA). BT is also partially supported by LabEx PERSYVAL-Lab
(ANR-11-LABX-0025-01).

References

[1] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org

[2] Geograml, a programming library of geometric algorithms. http://alice.loria.fr/software
/geogram/doc/html/

[3] Acosta, G., Durdn, R. G.: An optimal Poincaré inequality in L! for convex domains. Proc.
Amer. Math. Soc.132, 195-202 (2004) Zbl 1057.26010 MR 2021262

[4] Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces:
Applications to PDEs and Optimization. SIAM (2014) Zbl 1311.49001 MR 3288271

[5] Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares
clustering. Algorithmica 20, 61-76 (1998) Zbl 0895.68135 MR 1483422

[6] Benamou, J.-D., Froese, B. D., Oberman, A. M.: Numerical solution of the optimal trans-
portation problem using the Monge—Ampere equation. J. Comput. Phys. 260, 107-126 (2014)
Zbl 1349.65554 MR 3151832

[7] Caffarelli, L. A.: The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5,
99-104 (1992) Zbl 0753.35031 MR 1124980

[8] Caffarelli, L. A., Kochengin, S. A., Oliker, V. I.: On the numerical solution of the problem of
reflector design with given far-field scattering data. In: Monge Ampere Equation: Applications
to Geometry and Optimization (Deerfield Beach, FL, 1997), Contemp. Math. 226, Amer. Math.
Soc., 13-32 (1999) Zbl 0917.65104 MR 1660740


http://www.cgal.org
http://alice.loria.fr/software/geogram/doc/html/
http://alice.loria.fr/software/geogram/doc/html/
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1057.26010&format=complete
http://www.ams.org/mathscinet-getitem?mr=2021262
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1311.49001&format=complete
http://www.ams.org/mathscinet-getitem?mr=3288271
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0895.68135&format=complete
http://www.ams.org/mathscinet-getitem?mr=1483422
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1349.65554&format=complete
http://www.ams.org/mathscinet-getitem?mr=3151832
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0753.35031&format=complete
http://www.ams.org/mathscinet-getitem?mr=1124980
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0917.65104&format=complete
http://www.ams.org/mathscinet-getitem?mr=1660740

2650

Jun Kitagawa et al.

(9]

(10]

(11]

(12]

(13]
(14]
(15]
(16]
(17]
(18]
(19]
(20]
(21]
(22]
(23]
[24]
[25]

[26]

(27]

(28]

[29]

Carlier, G., A. Galichon, Santambrogio, F.: From Knothe’s transport to Brenier’s map and
a continuation method for optimal transport. SIAM J. Math. Anal. 41, 2554-2576 (2010)
Zbl 1203.49063 MR 2607321

de Castro, P. M. M., Mérigot, Q., Thibert, B.: Intersection of paraboloids and application to
Minkowski-type problems. In: Computational Geometry (SoCG’14), ACM, 308-317 (2014)
7Zbl 1397.68212 MR 3382311

de Goes, F., Breeden, K., Ostromoukhov, V., Desbrun, M.: Blue noise through optimal transport.
ACM Trans. Graphics 31, no. 6, art. 171, 10 pp. (2012)

de Goes, F., Wallez, C., Huang, J., Pavlov, D., Desbrun, M.: Power particles: an incompressible
fluid solver based on power diagrams. ACM Trans. Graphics 34, no. 4, art. 50, 11 pp. (2015)
Zbl 1334.68276

Figalli, A., Kim, Y.-H., McCann, R. J.: Holder continuity and injectivity of optimal maps. Arch.
Ration. Mech. Anal. 209, 747-795 (2013) Zbl 1281.49037 MR 3067826

Friedland, S., Nabben, R.: On Cheeger-type inequalities for weighted graphs. J. Graph Theory
41, 1-17 (2002) Zbl 1005.05028 MR 1919163

Gangbo, W., McCann, R. J.: The geometry of optimal transportation. Acta Math. 177, 113-161
(1996) Zbl 0887.49017 MR 1440931

Guillen, N., Kitagawa, J.: On the local geometry of maps with c-convex potentials. Calc. Var.
Partial Differential Equations 52, 345-387 (2015) Zbl 1309.35038 MR 3299185

Householder, A. S.: The Theory of Matrices in Numerical Analysis. Dover Publ., New York
(1975) Zbl 0329.65003 MR 0378371

Hug, D.: Generalized curvature measures and singularities of sets with positive reach. Forum
Math. 10, 699-728 (1998) Zbl 0938.52004 MR 1652084

Kim, Y.-H., Kitagawa, J.: On the degeneracy of optimal transportation. Comm. Partial Differ-
ential Equations 39, 1329-1363 (2014) Zbl 1304.49093 MR 3208810

Kim, Y.-H., McCann, R. J.: Continuity, curvature, and the general covariance of optimal
transportation. J. Eur. Math. Soc. 12, 1009-1040 (2010) Zbl 1191.49046 MR 2654086

Kitagawa, J.: An iterative scheme for solving the optimal transportation problem. Calc. Var.
Partial Differential Equations 51, 243-263 (2014) Zbl 1297.49051 MR 3247388

Lévy, B.: A numerical algorithm for L, semi-discrete optimal transport in 3D. ESAIM Math.
Model. Numer. Anal. 49, 1693-1715 (2015) Zbl 1331.49037 MR 3423272

Loeper, G.: On the regularity of solutions of optimal transportation problems. Acta Math. 202,
241-283 (2009)

Loeper, G.: Regularity of optimal maps on the sphere: the quadratic cost and the reflector
antenna. Arch. Ration. Mech. Anal. 199, 269-289 (2011) Zbl 1231.35280 MR 2754343

Loeper, G., Rapetti, F.: Numerical solution of the Monge—Ampere equation by a Newton’s
algorithm. C. R. Math. Acad. Sci. Paris 340, 319-324 (2005) Zbl 1067.65119 MR 2754343

Ma, X.-N., Trudinger, N. S., Wang, X.-J.: Regularity of potential functions of the optimal
transportation problem. Arch. Ration. Mech. Anal. 177, 151-183 (2005) Zbl 1072.49035
MR 2188047

Meérigot, Q.: A multiscale approach to optimal transport. Computer Graphics Forum 30, 1583-
1592 (2011)

Mirebeau, J.-M.: Discretization of the 3D Monge—Ampere operator, between wide stencils and

power diagrams. ESAIM Math. Model. Numer. Anal. 49, 1511-1523 (2015) Zbl 1330.65161

MR 3423234

Oliker, V., P L.: On th ical solution of th on 25 22 _ (.0%2)2 _
iker, V., Prussner, L.: On the numerical solution of the equation -5 oy (6x6y) f

and its discretizations, I. Numer. Math. 54, 271-293 (1989) Zbl 0659.65116 MR 0971703



http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1203.49063&format=complete
http://www.ams.org/mathscinet-getitem?mr=2607321
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1397.68212&format=complete
http://www.ams.org/mathscinet-getitem?mr=3382311
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1334.68276&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1281.49037&format=complete
http://www.ams.org/mathscinet-getitem?mr=3067826
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1005.05028&format=complete
http://www.ams.org/mathscinet-getitem?mr=1919163
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0887.49017&format=complete
http://www.ams.org/mathscinet-getitem?mr=1440931
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1309.35038&format=complete
http://www.ams.org/mathscinet-getitem?mr=3299185
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0329.65003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0378371
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0938.52004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1652084
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1304.49093&format=complete
http://www.ams.org/mathscinet-getitem?mr=3208810
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1191.49046&format=complete
http://www.ams.org/mathscinet-getitem?mr=2654086
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1297.49051&format=complete
http://www.ams.org/mathscinet-getitem?mr=3247388
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1331.49037&format=complete
http://www.ams.org/mathscinet-getitem?mr=3423272
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1231.35280&format=complete
http://www.ams.org/mathscinet-getitem?mr=2754343
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1067.65119&format=complete
http://www.ams.org/mathscinet-getitem?mr=2754343
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1072.49035&format=complete
http://www.ams.org/mathscinet-getitem?mr=2188047
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1330.65161&format=complete
http://www.ams.org/mathscinet-getitem?mr=3423234
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0659.65116&format=complete
http://www.ams.org/mathscinet-getitem?mr=0971703

A Newton algorithm for semi-discrete optimal transport 2651

(30]

(31]

(32]

(33]

[34]

Rockafellar, R. T.: Convex Analysis. Princeton Math. Ser. 28, Princeton Univ. Press, Princeton,
NJ (1970) Zbl 0193.18401 MR 0274683

Saumier, L.-P., Agueh, M., Khouider, B.: An efficient numerical algorithm for the L? op-
timal transport problem with periodic densities. IMA J. Appl. Math. 80, 135-157 (2015)
Zbl 06409002 MR 3335154

Schneider, R.: Convex Bodies: The Brunn—Minkowski Theory. Cambridge Univ. Press (1993)
Zbl 0798.52001 MR 1216521

Trudinger, N. S., Wang, X.-J.: On the second boundary value problem for Monge—Ampere type
equations and optimal transportation. Ann. Scuola Norm. Sup. Pisa CI. Sci. (5) 8, 143-174
(2009) Zbl 1182.35134 MR 2512204

Villani, C.: Optimal Transport: Old and New. Springer (2009) Zbl 1156.53003 MR 2459454


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0193.18401&format=complete
http://www.ams.org/mathscinet-getitem?mr=0274683
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06409002&format=complete
http://www.ams.org/mathscinet-getitem?mr=3335154
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0798.52001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1216521
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1182.35134&format=complete
http://www.ams.org/mathscinet-getitem?mr=2512204
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1156.53003&format=complete
http://www.ams.org/mathscinet-getitem?mr=2459454

	1. Introduction
	2. Kantorovich's functional
	3. Local regularity in a c-exponential chart
	4. C2, regularity of Kantorovich's functional
	5. Strong concavity of Kantorovich's functional
	6. Convergence of the damped Newton algorithm
	Appendix A. A weighted Poincaré–Wirtinger inequality
	Appendix B. Proof of Theorem 3.1
	References

