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Abstract. A popular way to solve optimal transport problems numerically is to assume that the
source probability measure is absolutely continuous while the target measure is finitely supported.
We introduce a damped Newton algorithm in this setting, which is experimentally efficient, and we
establish its global linear convergence for cost functions satisfying an assumption that appears in the
regularity theory for optimal transport.
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1. Introduction

Some problems in geometric optics or convex geometry can be recast as optimal trans-
port problems between probability measures: this includes the far-field reflector antenna
problem, Aleksandrov’s Gaussian curvature prescription problem, etc. A popular way
to solve these problems numerically is to assume that the source probability measure is
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absolutely continuous while the target measure is finitely supported. We refer to this setting
as semi-discrete optimal transport. Among the several algorithms proposed to solve semi-
discrete optimal transport problems, one currently needs to choose between algorithms
that are slow but come with a convergence speed analysis [29, 8, 21] or algorithms that
are much faster in practice but which come with no convergence guarantees [5, 27, 11,
22, 10]. Algorithms of the first kind rely on coordinatewise increments, and the number
of iterations required to reach the solution up to an error of ε is of order N3/ε, where N
is the number of Dirac masses in the target measure. On the other hand, algorithms of
the second kind typically rely on the formulation of the semi-discrete optimal transport
problem as an unconstrained convex optimization problem which is solved using a Newton
or quasi-Newton method.

The purpose of this article is to bridge this gap between theory and practice by
introducing a damped Newton algorithm which is experimentally efficient and by proving
the global convergence of this algorithm with optimal rates. The main assumption is that
the cost function satisfies a condition that appears in the regularity theory for optimal
transport (the Ma–Trudinger–Wang condition) and that the support of the source density is
connected in a quantitative way (it must satisfy a weighted Poincaré–Wirtinger inequality).
In §1.7, we compare this algorithm and the convergence theorem to previous computational
approaches to optimal transport.

1.1. Semi-discrete optimal transport

The source space is an open domain � of a d-dimensional Riemannian manifold, which
we endow with the measure Hd

g induced by the Riemannian metric g on the manifold. The
target space is an (abstract) finite set Y . We are given a cost function c on the product
space �× Y , or equivalently a collection (c(·, y))y∈Y of functions on �. We assume that
the functions c(·, y) are of class C1,1 on �:

∀y ∈ Y, c(·, y) ∈ C1,1(�). (Reg)

Here Cn,α(�) denotes the class of functions which are n-times differentiable and whose
n-th derivatives are α-Hölder continuous. In particular, C0,α is the space of α-Hölder
continuous functions. We consider a compact subset X of � and a probability density ρ on
X, i.e. ρ dHd is a probability measure. By an abuse of notation, we will often conflate the
density ρ with the measure ρ dHd itself. Note that the support of ρ is contained in X, but
we do not assume that it is actually equal to X. The push-forward of ρ by a measurable
map T : X→ Y is the finitely supported measure T#ρ =

∑
y∈Y ρ(T

−1(y))δy . The map
T is called a transport map between ρ and a probability measure µ on Y if T#ρ = µ. The
semi-discrete optimal transport problem consists in minimizing the transport cost over all
transport maps between ρ and µ, that is,

min
{∫

X

c(x, T (x))ρ(x) dHd
g(x)

∣∣∣∣ T : X→ Y such that T#ρ = µ

}
. (M)

This problem is an instance of Monge’s optimal transport problem, where the target
measure is finitely supported. Kantorovich proposed a relaxed version of the problem (M)
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as an infinite-dimensional linear programming problem over the space of probability
measures with marginals ρ and µ.

1.2. Laguerre tessellation and economic interpretation

In the semi-discrete setting, the dual of Kantorovich’s relaxation can be conveniently
phrased using the notion of Laguerre tessellation. We start with an economic metaphor.
Assume that the probability density ρ describes the population distribution over a large
city X, and that the finite set Y describes the location of bakeries in the city. Customers
living at a location x in X try to minimize the walking cost c(x, y), resulting in a decom-
position of the space called a Voronoi tessellation. The number of customers received by a
bakery y ∈ Y is equal to the integral of ρ over its Voronoi cell, namely

Vory := {x ∈ � | ∀z ∈ Y, c(x, y) ≤ c(x, z)}.

If the price of bread is given by a function ψ : Y → R, customers living at location x in X
make a compromise between walking cost and price by minimizing the sum c(x, y)+ψ(y).
This leads to the notion of Laguerre tessellation, whose cells are given by

Lagy(ψ) := {x ∈ � | ∀z ∈ Y, c(x, y)+ ψ(y) ≤ c(x, z)+ ψ(z)}. (1.1)

When the sets X and Y are contained in Rd and the cost is the squared Euclidean distance,
the computation of the Laguerre tessellation is a classical problem of computational
geometry, for which there exists very efficient software, such as CGAL [1] or Geogram [2].
For other cost functions, one has to adapt the algorithms, as was done for the reflector cost
on the sphere in [10]. The shape of the Voronoi and Laguerre tessellations is depicted in
Figure 1.

Y
X

Fig. 1. Left: the domain X (with boundary in blue) is endowed with a probability density pictured in
grayscale representing the density of population in a city. The set Y (in red) represents the location
of bakeries. Here, X, Y ⊆ R2 and c(x, y) = |x − y|2. Middle: The Voronoi tessellation induced by
the bakeries. Right: The Laguerre tessellation: the price of bread at the bakery near the center of X
is higher than at the other bakeries, effectively shrinking its Laguerre cell.

We want the Laguerre cells to form a partition of � up to a negligible set. By the
implicit function theorem, this will be the case if the following twist condition holds:

∀x ∈ X, Y 3 y 7→ Dxc(x, y) ∈ T ∗x � is injective, (Twist)

where Dx denotes differentiation with respect to the first variable. The twist condition
implies that for any prices ψ on Y , the transport map induced by the Laguerre tessellation,

Tψ (x) := arg min
y∈Y

(c(x, y)+ ψ(y)), (1.2)
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is uniquely defined almost everywhere. It is easy to see (Proposition 2.2) that for any
function ψ on Y , the map Tψ is an optimal transport map between ρ and the push-forward
measure Tψ#ρ =

∑
y∈Y ρ(Lagy(ψ))δy .

1.3. Kantorovich’s functional

The map Tψ is an optimal transport map between ρ and Tψ#ρ. Conversely, Theorem 1.1
below ensures that any semi-discrete optimal transport problem admits such a solution.
In other words, for any probability density ρ on X and any probability measures µ on Y
there exists a function (price) ψ on Y such that Tψ#ρ = ν. The proof of this theorem is an
easy generalization of the proof given in [5] for the quadratic cost, but it is nonetheless
included in Section 2 for the sake of completeness.

Here and below, we denote by (1y)y∈Y the canonical basis of RY , and by ‖ · ‖ the
Euclidean norm induced by this basis, while ‖ · ‖g will denote the norm induced by the
Riemannian metric g on either Tx� or T ∗x � (which will be clear from context). We will,
slightly abusively, consider the space P(Y ) of probability measures as a subset of RY .

Theorem 1.1. Assume (Reg) and (Twist), and let ρ be a bounded probability density on
X and ν =

∑
y∈Y νy1y in P(Y ). Then the functional 8 given by

8(ψ) :=

∫
X

(
min
y∈Y

c(x, y)+ ψ(y)
)
ρ(x) dHd

g(x)−
∑
y∈Y

ψ(y)νy

=

∑
y∈Y

∫
Lagy (ψ)

(c(x, y)+ ψ(y))ρ(x) dHd
g(x)−

∑
y∈Y

ψ(y)νy (1.3)

is concave, C1-smooth, and its gradient is

∇8(ψ) =
∑
y∈Y

(ρ(Lagy(ψ))− νy)1y . (1.4)

Corollary 1.2. The following statements are equivalent:

(i) ψ : Y → R is a global maximizer of 8;
(ii) Tψ is an optimal transport map between ρ and ν;

(iii) Tψ#ρ = ν, or equivalently

∀y ∈ Y, ρ(Lagy(ψ)) = νy (MA)

We call the function 8 introduced in (1.3) Kantorovich’s functional. Note that both
this functional and its gradient are invariant by addition of a constant. The non-linear
equation (MA) can be considered as a discrete version of the generalized Monge–Ampère
equation that characterizes the solutions to optimal transport problems (see for instance
[34, Chapter 12]).

1.4. Damped Newton algorithm

We consider a simple damped Newton algorithm to solve the semi-discrete optimal trans-
port problem. This algorithm is very close to the one used by Mirebeau [28]. To phrase
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this algorithm in a more general way, we introduce a notation for the measure of Laguerre
cells: for ψ ∈ RY we set

G(ψ) :=
∑
y∈Y

Gy(ψ)1y where Gy(ψ) = ρ(Lagy(ψ)), (1.5)

so that ∇8(ψ) = G(ψ)− ν. In Algorithm 1 below, we denote by A+ the pseudo-inverse
of the matrix A.

Algorithm 1. Simple damped Newton’s algorithm

Input: A tolerance η > 0 and an initial ψ0 ∈ RY such that

ε0 :=
1
2

min
[
min
y∈Y

Gy(ψ0), min
y∈Y

µy

]
> 0. (1.6)

While: ‖Gy(ψk)− µy‖ ≥ η
Step 1: Compute dk = −DG(ψk)+(G(ψk)− µ)
Step 2: Determine the minimum ` ∈ N such that ψ`

k
:= ψk + 2−`dk satisfiesmin

y∈Y
Gy(ψ

`
k ) ≥ ε0

‖G(ψ`k )− µ‖ ≤ (1− 2−(`+1))‖G(ψk)− µ‖

Step 3: Set ψk+1 = ψk + 2−`dk and k← k + 1.

The goal of this article is to prove the global convergence of this damped Newton algorithm
and to establish estimates on the speed of convergence. As shown in Proposition 6.1, the
convergence of Algorithm 1 depends on the regularity and strong monotonicity of the map
G = ∇8. As we will see, the regularity of G will depend mostly on the geometry of the
cost function and the regularity of the density. On the other hand, the strong monotonicity
of G will require a strong connectedness assumption on the support of ρ, in the form
of a weighted Poincaré–Wirtinger inequality. Before stating our main theorem we give
some indication about these intermediate regularity and monotonicity results and their
assumptions.

1.5. Regularity of Kantorovich’s functional and MTW condition

In order to establish the convergence of a damped Newton algorithm for (MA), we need to
study the C2,α regularity of Kantorovich’s functional 8. However, while C1 regularity of
8 follows rather easily from the (Twist) hypothesis (or even from a weaker hypothesis,
see Theorem 2.1), higher order regularity seems to depend on the geometry of the cost
function in a more subtle manner. We found that a sufficient condition for the regularity
of 8 is the Ma–Trudinger–Wang condition [26], which appeared naturally in the study of
the regularity of optimal transport maps. We use a discretization of Loeper’s geometric
reformulation of the Ma–Trudinger–Wang condition [23].
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Definition 1.1 (Loeper’s condition). The cost c satisfies Loeper’s condition if for every y
in Y there exists a convex open subset �y of Rd and a C1,1 diffeomorphism expcy :
�y → � such that the functions

�y 3 p 7→ c(expcy p, y)− c(expcy p, z) are quasi-convex for all z in Y . (QC)

The map expcy is called the c-exponential with respect to y, and the domain �y is an
exponential chart.

We comment here that when Y is a finite subset of a continuous space and c satisfies
conditions (Reg), (Twist), and (A3w) (see pages 2604, 2605, and 2631 respectively), the
c-exponential map defined in the usual sense in optimal transport theory (see Remarks 1.1
and 4.4) will satisfy what we call Loeper’s condition above. However, it will become
apparent that for our purposes what is essential is the above quasi-convexity property and
not the actual definition of expcy . Thus we will use the notation expcy even in cases when Y
is not a finite subset of a continuous space.

Definition 1.2 (c-Convexity). Assuming Loeper’s condition, a subset X of � is c-convex
with respect to a point y of Y if its inverse image (expcy)

−1(X) is convex. The subset X is
said to be c-convex if it is c-convex with respect to every point y in Y .

Note that by assumption, the domain � itself is c-convex. The connection between this
discrete version of Loeper’s condition and the conditions used in the regularity theory for
optimal transport is detailed in Remark 1.1. The (QC) condition implies the convexity of
each Laguerre cell in its own exponential charts, namely (expcy)

−1(Lagy(ψ)) is convex
for every y in Y . This plays a crucial role in the regularity of Kantorovich’s functional.

Theorem 1.3. Assume (Reg), (Twist), and (QC). Let X be a compact, c-convex subset
of � and let ρ be in Pac(X)∩ C0,α(X) for α in (0, 1]. Then Kantorovich’s functional is of
class C2,α

loc on the set

K+ := {ψ : Y → R | ∀y ∈ Y, ρ(Lagy(ψ)) > 0}, (1.7)

and its Hessian is given by

∂28

∂1y∂1z
(ψ) =

∫
Lagy (ψ)∩Lagz(ψ)

ρ(x)

‖Dxc(x, y)− Dxc(x, z)‖g
dHd−1

g (x) (z 6= y),

∂28

∂12
y

(ψ) = −
∑

z∈Y\{y}

∂28

∂1y∂1z
.

(1.8)

The proof of this theorem and a more precise statement are given in Section 4 (Theo-
rem 4.1), showing that the C2,α estimate can be made uniform when the mass of the
Laguerre cells is bounded from below by a positive constant.
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Remark 1.1. We remark that under certain assumptions on the cost c, our (QC) condition
is implied by classical conditions introduced in a smooth setting by X.-N. Ma, N. Trudinger,
and X.-J. Wang [26], which include the well known (MTW) or (A3) condition. See
Remark 4.4 for more specifics.

There are a wide variety of known examples satisfying these conditions. Aside from the
canonical example of the inner product on Rn × Rn, and other costs on Euclidean spaces
mentioned in [26, 33], there are the non-flat examples of the Riemannian distance squared
and − log ‖x − y‖Rn+1 on (a subset of) Sn × Sn (see [24]). The last cost is associated to
the far-field reflector antenna problem. We refer the reader to [19, p. 1331] for a (more)
comprehensive list of such costs.

1.6. Strong concavity of Kantorovich’s functional

As noted earlier, Kantorovich’s functional8 cannot be strictly concave, since it is invariant
under addition of a constant. This implies that the Hessian D28 has a zero eigenvalue
corresponding to the constants. A more serious obstruction to the strict concavity of 8 at
a point ψ arises when the discrete graph induced by the Hessian (where two points are
connected iff ∂28/∂1y∂1z(ψ) 6= 0) is not connected. This can happen either because one
of the Laguerre cells is empty (hence not connected to any neighbor) or if the support of
the probability density ρ is itself disconnected. In order to avoid the latter phenomena, we
will require that (X, ρ) satisfies a weighted L1 Poincaré–Wirtinger inequality.

Definition 1.3 (weighted Poincaré–Wirtinger). A continuous probability density ρ on
a compact set X ⊆ � satisfies a weighted Poincaré–Wirtinger inequality with constant
Cpw > 0 if for every C1 function f on X,

‖f − Eρ(f )‖L1(ρ) ≤ Cpw‖∇f ‖L1(ρ), (PW)

where ‖h‖L1(ρ) :=
∫
X
|h(x)|ρ(x) dHd

g(x) and Eρ(f ) :=
∫
X
f (x)ρ(x) dHd

g(x).

We denote by EY the orthogonal complement (in RY ) of the space of constant functions
on Y , that is, EY := {ψ ∈ RY |

∑
y ψ(y) = 0}. As before, K+ is the set of functions ψ

whose Laguerre cells all have positive mass.

Theorem 1.4. Assume (Reg), (Twist), and (QC). Let X be a compact, c-convex subset
of �, and ρ be a continuous probability density on X satisfying (PW). Then Kantorovich’s
functional 8 is strictly concave on EY ∩K+.

As before, a more quantitative statement is proven in Section 5 (Theorem 5.1), establishing
strong concavity of 8 under the assumption that the mass of the Laguerre cells is bounded
from below by a positive constant.
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1.7. Convergence result

Putting Proposition 6.1, Theorem 1.3 and Theorem 1.4 together, we can prove the global
convergence of the damped Newton algorithm for semi-discrete optimal transport (Algo-
rithm 1) together with optimal convergence rates.

Theorem 1.5. Assume (Reg), (Twist), and (QC), and also that

(i) the support of the probability density ρ is included in a compact, c-convex subset X
of �, and ρ ∈ C0,α(X) for α in (0, 1],

(ii) ρ has positive Poincaré–Wirtinger constant.

Then the damped Newton algorithm for semi-discrete optimal transport (Algorithm 1)
converges globally with linear rate and locally with rate 1+ α.

Remark 1.2. This theorem makes no assumption about the convexity (or c-convexity)
of the support of the source density ρ. Such cases are not handled by other numerical
methods for Monge–Ampère equations [6, 24]. For completeness, in Appendix A we
provide an explicit example of a radial measure on Rd whose support is an annulus but
whose Poincaré–Wirtinger constant is nonetheless positive.

Remark 1.3. The positive lower bound on the damping parameter (τk = 2−` in Algo-
rithm 1) established in this theorem degrades as N grows to infinity. It is plausible (but far
from direct) that one could control this quantity when N is large by a comparison to the
continuous Monge–Ampère equation. The strong concavity estimate (Theorem 1.4) would
then need to be replaced by uniform ellipticity estimates for the linearized Monge–Ampère
equation, while the regularity estimate (Theorem 1.3) would be replaced by regularity esti-
mates for solutions to the Monge–Ampère equation. We refer to Loeper and Rapetti [25]
for an implementation of this ideas in a continuous setting. The space-discretization of
their approach is open.

Comparison to previous work. There exist a few other numerical methods relying on
Newton’s algorithm for the resolution of the standard Monge–Ampère equation or for
the quadratic optimal transport problem. Here, we highlight some of the differences
between Algorithm 1 and Theorem 1.5 and these existing results. First, we note that
many authors have reported the good behavior in practice of Newton’s or quasi-Newton’s
methods for solving discretized Monge–Ampère equations or optimal transport problems
[27, 11, 6]. Note however that none of these works contain convergence proofs for the
Newton algorithm.

Loeper and Rapetti [25] (their result was refined by Saumier, Agueh, and
Khouider [31]) establish the global convergence of a damped Newton method for solving
quadratic optimal transport on the torus, relying heavily on Caffarelli’s regularity theory.
In particular, the convergence of the algorithm requires a positive lower bound on the
probability densities, while this condition is not necessary for Theorem 1.5 (see Section 5
and Appendix A where we explicitly construct probability densities with non-convex
support that still satisfy the hypothesis of Theorem 1.5). A second drawback of relying on
the regularity theory for optimal transport is that the damping parameter, which is an input
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parameter of the algorithm used in [25], cannot be determined explicitly from the data.
Third, the convergence proof is for continuous densities, and it seems difficult to adapt it
to the space-discretized problem. On the positive side, it seems likely that the convergence
proof of [25], [31] can be adapted to cost functions satisfying the Ma–Trudinger–Wang
condition (which is equivalent to Loeper’s condition (QC) that we also require).

Oliker and Prussner [29] prove the local convergence of Newton’s method for finding
Aleksandrov’s solutions to the Monge–Ampère equation det D2u = ν with Dirichlet
boundary conditions, where ν is a finitely supported measure. Global convergence for a
damped Newton algorithm is established by Mirebeau [28] for a variant of Oliker and
Prussner’s discretization, but without convergence rates. Theorem 1.5 can be seen as
an extension of the strategy applied by Mirebeau to optimal transport problems, which
amounts to (a) replacing the Dirichlet boundary conditions with the second boundary value
conditions from optimal transport, (b) replacing the Lebesgue measure by more general
probability densities, and (c) changing the Monge–Ampère equation itself in order to deal
with more general cost functions.

We also comment here that our result Theorem 5.1 answers a conjecture first raised
by Gangbo and McCann in the case when the cost function satisfies the Ma–Trudinger–
Wang condition. In [15, Example 1.6], a numerical approach to the semi-discrete optimal
transport problem is suggested by taking what is equivalent to the negative gradient
flow of the Kantorovich function defined in (1.3) above. There, Gangbo and McCann
conjecture that this gradient flow should converge, and our result of uniform concavity of
the Kantorovich functional confirms a quantitative strengthening of this conjecture, at least
for costs, measures, and domains satisfying the assumptions of Theorem 5.1.

Finally, we note that the overall strategy for proving the convergence of Algorithm 1
(proving regularity then strict concavity of 8) shares features of the one used in [9] to
study the relationship between highly anisotropic semi-discrete quadratic optimal transport
and Knothe rearrangement.

Outline. In Section 2, we establish the differentiability of Kantorovich’s functional 8,
adapting arguments from [5]. In Sections 3 and 4, we prove the (uniform) second-
differentiability of Kantorovich’s functional when the cost function satisfies Loeper’s
(QC) condition. Section 5 is devoted to the proof of uniform concavity of Kantorovich’s
functional when the probability density satisfies a Poincaré–Wirtinger inequality (PW). In
Section 6, we combine these intermediate results to prove the convergence of the damped
Newton algorithm (Theorem 1.5), and we present a numerical illustration. Appendix A
presents an explicit construction of a probability density with non-convex support over Rd
which satisfies the assumptions of Theorem 1.5. Appendix B contains the details of the
proof of the main theorem of Section 4.

2. Kantorovich’s functional

The purpose of this section is to present the variational formulation introduced in [5] for
the semi-discrete optimal transport problem, adapting the arguments presented [5] for
the squared Euclidean cost in to cost functions satisfying (Reg′) and (Twist′), which are
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weaker than the conditions (Reg) and (Twist) presented in the introduction:

∀y ∈ Y, c(·, y) ∈ C0(�), (Reg′)

∀y 6= z ∈ Y, ∀t ∈ R, Hd
g((c(·, y)− c(·, z))

−1(t)) = 0. (Twist′)

Note that under (Twist′), the map Tϕ : X → Y defined by (1.2) is uniquely defined
Hd
g -almost everywhere. Most of the results presented here are well known in the optimal

transport literature; however, we include proofs for completeness.

Theorem 2.1. Assume (Reg′) and (Twist′), and let ρ be a bounded probability density
on X and ν =

∑
y∈Y νyδy a probability measure over Y . Then the functional 8 defined

by (1.3) is concave, C1-smooth, and its gradient is given by (1.4).

The proof of Theorem 2.1 relies on Propositions 2.2 and 2.3.

Proposition 2.2. For any ψ : Y → R, the map Tψ is an optimal transport map for the
cost c between any probability density ρ on � and the push-forward measure ν := Tψ#ρ.

Proof. Assume that ν = S#ρ where S is a measurable map between X and Y . Then, by
definition of Tψ ,

∀x ∈ X, c(x, Tψ (x))+ ψ(Tψ (x)) ≤ c(x, S(x))+ ψ(S(x)).

Multiplying this inequality by ρ and integrating it over X gives∫
X

(
c(x, Tψ (x))+ ψ(Tψ (x))

)
ρ(x) dHd

g(x) ≤

∫
X

(
c(x, S(x))+ ψ(S(x))

)
ρ(x) dHd

g(x).

Since ν = S#ρ = Tψ#ρ, the change of variable formula gives∫
X

ψ(S(x))ρ(x) dHd
g(x) =

∫
Y

ϕ(y) dν =
∫
X

ψ(Tψ (x))ρ(x) dHd
g(x).

Subtracting this equality from the inequality above shows that Tψ is optimal:∫
X

c(x, Tψ (x))ρ(x) dHd
g(x) ≤

∫
X

c(x, S(x))ρ(x) dHd
g(x). ut

Proposition 2.3. Assume (Twist′) and (Reg′). Let ρ be a probability density over a com-
pact subset X of �. Then the map G : RY → RY is continuous, where

G(ψ) = (ρ(Lagy(ψ)))y∈Y . (2.1)

Lemma 2.4. Let ρ be a probability density over a compact subset X of �, and let f
in C0(X) be such that ρ(f−1(t)) = 0 for all t ∈ R. Then the function g : t 7→
ρ(f−1((−∞, t])) is continuous.
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Proof. We consider the function h(t) = ρ(f−1((−∞, t))). By hypothesis, g(t)− h(t) =
ρ(f−1(t)) = 0. Using Lebesgue’s monotone convergence theorem one easily sees that g
(resp. h) is right-continuous (resp. left-continuous). This concludes the proof. ut

Proof of Proposition 2.3. Proving the continuity of G amounts to proving the continuity
of the functions Gy(ψ) := ρ(Lagy(ψ)) for any y in Y . Fix y in Y and observe that by
definition, Lagy(ψ) =

⋂
z 6=y∈Y Hz(ψ) where

Hz(ψ) := {x ∈ X | c(x, y)+ ψ(y) ≤ c(x, z)+ ψ(z)}.

Denoting by A4 B the symmetric difference of two sets, we have the inequalities

|Gy(ψ)−Gy(ϕ)| ≤ ρ(Lagy(ψ)4 Lagy(ϕ)) ≤
∑

z∈Y\{y}

ρ(Hz(ψ)4Hz(ϕ)). (2.2)

Fix z 6= y ∈ Y , and denote f = c(·, y)− c(·, z). Then

Hz(ψ)4Hz(ϕ) ⊆ f
−1([ψ(z)− ψ(y), ϕ(z)− ϕ(y)]).

Here and below, we use the convention that [a, b] = [min{a, b},max{a, b}]. By (Twist′)
and Lemma 2.4 we know that limϕ→ψ ρ(Hz(ψ)4Hz(ϕ)) = 0, which by (2.2) concludes
the proof. ut

2.1. Proof of Theorem 1.1

We simultaneously show that the functional is concave and compute its gradient. For any
function ψ on Y and any measurable map T : X→ Y , one has miny∈Y (c(x, y)+ψ(y)) ≤
c(y, T (y))+ ψ(T (y)), which by integration gives

8(ψ) ≤

∫
X

(
c(x, T (x))+ ψ(T (x))

)
ρ(x) dHd

g(x)−
∑
y∈Y

ψ(y)νy . (2.3)

Moreover, equality holds when T = Tψ . Taking another function ϕ on Y and setting
T = Tϕ in (2.3) gives

8(ψ) ≤ 8(ϕ)+ 〈G(ϕ)− ν | ψ − ϕ〉,

where G is as in Proposition 2.3. This proves that the superdifferential ∂+8(ϕ) contains
G(ϕ)− ν, thus establishing the concavity of 8 and its differentiability almost everywhere.
It is known by [30, Theorem 25.6] that

∂+8(ϕ) = conv
{

lim
n→∞
∇8(ϕn)

∣∣∣ (ϕn) ∈ S},
where conv denotes the convex envelope and S the set of sequences (ϕn) converging to ϕ
such that 8 is differentiable at ϕn. By Proposition 2.3, the map G is continuous, meaning
that we have constructed a continuous selection of the superdifferential of the concave
function 8:

∂+8(ϕ) = conv
{

lim
n→∞
∇8(ϕn)

}
= conv

{
lim
n→∞

G(ϕn)− ν
}
= {G(ϕ)− ν}.

This proves that 8 is C1, and that ∇8(ϕ) = G(ϕ)− ν.



2614 Jun Kitagawa et al.

3. Local regularity in a c-exponential chart

The results presented in this section constitute an intermediate step in the proof of C2,α

regularity of Kantorovich’s functional. Let X̂ be a compact, convex subset of Rd and
f1, . . . , fN be C1,1 functions on X̂ which are quasi-convex, meaning that for any scalar
λ ∈ R the closed sublevel sets Ki(λ) := f−1

i ([−∞, λ]) are convex. Let ρ̂ be a continuous
probability density over X̂. The purpose of this section is to give sufficient conditions for
the regularity of the following function Ĝ near the origin of RN :

Ĝ : RN 3 λ 7→
∫
K(λ)

ρ̂(x) dHd(x), (3.1)

where

K(λ) :=

N⋂
i=1

Ki(λi) = {x ∈ X̂ | ∀i ∈ {1, . . . , N}, fi(x) ≤ λi}.

3.1. Assumptions and statement of the theorem

We will impose two conditions on the functions (fi)1≤i≤N . As we will see in Section 4,
both conditions are satisfied when these functions are constructed from a semi-discrete
optimal transport transport problem whose cost function satisfies Loeper’s condition (see
Definition 1.1).

Non-degeneracy. The functions (fi) satisfy the non-degeneracy condition if the norms of
their gradients are bounded from below by a positive constant:

εnd := min
1≤i≤N

min
X̂

‖∇fi‖ > 0. (ND)

This condition is necessary for the continuity of the map Ĝ even when N = 1.

Transversality. The boundary of the convex set K(λ) can be decomposed into N + 1
facets, namely (K(λ) ∩ ∂Ki(λi))1≤i≤N and K(λ) ∩ ∂X̂. The purpose of the transversality
condition we consider is to ensure that the angle between adjacent facets is bounded from
below by a positive constant when λ remains close to some fixed vector λ0.

Definition 3.1 (Normal cone). Let K be a convex compact set of Rd . The normal cone
to K at a point x in K is the set

NxK = {v ∈ Rd | ∀y ∈ K, 〈y − x | v〉 ≤ 0}, (3.2)

and its elements are said to be normal to K at x.

Definition 3.2 (Transversality). The family (fi) of functions satisfy the transversality
condition near λ0 if there exist positive constants εtr and Ttr ≤ 1 such that for every λ
in RN satisfying ‖λ − λ0‖∞ ≤ Ttr for the usual `∞ norm on RN and every point x in
∂K(λ) one has:
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if ∃i 6= j ∈ {1, . . . , N}, fi(x) = λi and fj (x) = λj ,

then
(
〈∇fi(x) | ∇fj (x)〉

‖∇fi(x)‖ ‖∇fj (x)‖

)2

≤ 1− ε2
tr;

if ∃i ∈ {1, . . . , N}, fi(x) = λi and x ∈ ∂X̂,

then ∀u ∈ NxX̂,

(
〈u | ∇fj (x)〉

‖u‖ ‖∇fj (x)‖

)2

≤ 1− ε2
tr.

(T)

Note that if ∂X̂ is smooth at x, then NxX̂ is the ray spanned by the exterior normal to X̂
at x.

Theorem 3.1. Assume that the functions fi satisfy the non-degeneracy condition (ND)
and the transversality condition (T) near λ0. Let ρ̂ be a C0,α probability density on X̂.
Then the map Ĝ defined in (3.1) is of class C1,α on the cube Q := λ0 + [−Ttr, Ttr]

N and
has partial derivatives given by

∂Ĝ

∂λi
(λ) =

∫
K(λ)∩∂Ki (λi )

ρ̂(x)

‖∇fi(x)‖
dHd−1(x). (3.3)

In addition, the norm ‖Ĝ‖C1,α(Q) is bounded by a constant depending only on εtr, εnd,
‖ρ̂‖C0,α(X̂), on the diameter of X̂ and on

CM := max
1≤i≤N

‖∇fi‖∞, CL := max
1≤i≤N

‖∇fi‖Lip(X̂).

Note that the C1,α constant of Ĝ depends on the transversality constant εtr but does not
depend on Ttr.

3.2. Sketch of proof

The correct expression for the partial derivatives of Ĝ, given by (3.3), can easily be
guessed by applying the coarea formula. The non-degeneracy condition then ensures that
the denominator in this expression does not vanish. What is more delicate is to prove
that these partial derivatives are α-Hölder, with a uniform estimate on the α-Hölder norm.
A second application of the coarea formula on the manifold f−1

i (λi) suggests that for
j 6= i one should have∣∣∣∣ ∂∂λj

∫
K(λ)∩∂Ki (λi )

ρ̂(x)

‖∇fi(x)‖
dHd−1(x)

∣∣∣∣ ≤ CHd−2(K(λ) ∩ ∂Ki(λi) ∩ ∂Kj (λj ))
under the assumption that the density ρ̂ is C1 and the facetK(λ)∩∂Ki(λ) does not intersect
∂X̂. It will turn out that, thanks to the transversality hypothesis, the Hd−2-measure of the
union 6(λ) of these facets can be uniformly bounded:

6(λ) =
⋃

1≤i≤N

(
K(λ) ∩ ∂X̂ ∩ ∂Ki(λi)

)
∪

⋃
1≤i<j≤N

(
K(λ) ∩ ∂Ki(λi) ∩ ∂Kj (λj )

)
.
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Note also that equivalently, a point x belongs to the singular set 6(λ) if and only if it
satisfies one of the assumptions in (T). In the next subsection, we prove an upper bound
on Hd−2(6(λ)) (see Proposition 3.2). The proof of Theorem 3.1 follows from this upper
bound and from several applications of the coarea formula. Since it is elementary but quite
long, we have postponed the proof of the theorem itself to Appendix B.

3.3. Control on the (d − 2)-Hausdorff measure of singular points

In this section, we prove that the transversality condition (T) and the quasi-convexity of
the functions fi imply a uniform upper bound on the (d − 2)-Hausdorff measure of 6(λ).

Proposition 3.2. Assuming the transversality condition (T), there exists a constant de-
pending only on d and diam(X̂) such that for ‖λ‖∞ ≤ Ttr,

Hd−2(6(λ)) ≤ C(d, diam(X̂))
1
εtr
.

We will deduce this proposition from a general upper bound on the (d − 2)-Hausdorff
measure of the set of τ -singular points of a compact convex body. A more general and
quantitative version of this bound can be found in [18]. Below we provide a straightforward
and easy proof based on the notions of packing and covering numbers.

Proposition 3.3. Let K be a convex, compact subset of Rd and τ > 0. Then

Hd−2(Sing(K, τ)) ≤ C(d, diam(K))
1
τ
,

where Sing(K, τ) := {x ∈ ∂K | ∃u, v ∈ Nx(K) ∩ Sd−1, 〈u | v〉2 ≤ 1− τ 2
}.

Recall that the covering number Cov(K, η) of a subset K ⊆ Rd is the minimum number
of Euclidean balls of radius η required to cover K . The packing number of a subset K is
given by

Pack(K, η) := max{Card(X) | X ⊆ K and ∀x 6= y ∈ X, ‖x − y‖ ≥ η}.

We will use the following comparisons between covering and packing numbers:

Cov(K, η) ≤ Pack(K, η) ≤ Cov(K, η/2). (3.4)

Proof of Proposition 3.3. The proof consists in comparing a lower bound and an upper
bound of the packing number of the set

U := {(x, n) ∈ Rd × Sd−1
| x ∈ Sing(K, τ) and n ∈ Nx(K)}.

Step 1. We first calculate an upper bound on the covering number of the unit bundle
UK := {(x, n) ∈ ∂K × Sd−1

| n ∈ NxK}. Given r > 0, we denote by Kr the set of
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points within distance r of K . By convexity, the projection map pK : Rd → K , mapping a
point to its orthogonal projection on K , is well defined and 1-Lipschitz. We consider

π : ∂Kr
→ U(K), x 7→

(
pK(x),

x − pK(x)
‖x − pK(x)‖

)
.

The map π is surjective and has Lipschitz constant L :=
√

1+ 4/r2. We deduce an upper
bound on the covering number of UK from the covering number of the level set ∂Kr :

Cov(U(K), ε) ≤ Cov(∂Kr , ε/L).

Now, consider a sphere S with diameter 2 diam(K) that encloses the tubular neighbor-
hood Kr with r := diam(K). The projection map pKr is 1-Lipschitz, and pKr (S) = ∂Kr .
Using the same argument as above, we have

Cov(∂Kr , η) ≤ Cov(S, η) ≤ C(d) · (diam(K)/η)d−1.

Combining these bounds with the inclusion U ⊆ U(K) gives

Cov(U, ε) ≤
C(d, diam(K))

εd−1 . (3.5)

Step 2. We now establish a lower bound for Pack(U, 2ε). Let x be a τ -singular point and
u, v be two unit vectors such that 〈u | v〉2 ≤ 1−τ 2. This implies that NxK∩Sd−1 contains
a spherical geodesic segment of length at least C ·τ , giving us a lower bound on the packing
number of NxK∩Sd−1, namely Pack(NxK∩Sd−1, η) ≥ C ·τ/η. Now, letX be a maximal
set in the definition of the packing number Pack(Sing(K, τ), 2ε), and for every x ∈ X,
let Yx be a maximal set in the definition of the packing number Pack(Nx(K) ∩ Sd−1, 2ε),
so that Card(Yx) ≥ C · τ/ε. Then the set Z := {(x, y) | x ∈ X, y ∈ Yx} is a 2ε-packing
of U , and the cardinality of this set is bounded from below by C · Card(X) · τ/ε. This
gives

Pack(U, 2ε) ≥ C · Pack(Sing(K, τ), 2ε) · τ/ε. (3.6)
Step 3. Combining (3.5), (3.6) and the comparison between packing and covering numbers
(3.4), we get

Pack(Sing(K, τ), 2ε) ≤
C(d, diam(K))

τεd−2 .

Using the comparison between packing and covering numbers, this means that we can
cover Sing(K, τ) with Nε balls of radius ε such that Nε ≤ C(d, diam(K))/(τεd−2). By
definition of the Hausdorff measure, we have

Hd−2(Sing(K, τ)) ≤ lim inf
ε→0

Nεε
d−2
≤ C(d, diam(K))

1
τ
. ut

Proof of Proposition 3.2. Given ‖λ‖∞ ≤ Ttr, the transversality condition (T) implies

∀x ∈ 6(λ), ∃u, v ∈ NxK(λ),

(
〈u | v〉

‖u‖ ‖v‖

)2

≤ 1− ε2
tr,

where NxK(λ) is the normal cone to the convex set K(λ) at x (see (3.2)). This implies
that 6(λ) is included in the set Sing(K(λ), εtr) of τ -singular points with τ = εtr. The
conclusion then follows from Proposition 3.3. ut
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4. C2,α regularity of Kantorovich’s functional

This section is devoted to the proof of the following regularity result. Recall that the
conditions (Reg), (Twist), and (QC) are defined in the introduction on pages 2604, 2605,
and 2608 respectively.

Theorem 4.1. Assume (Reg), (Twist), and (QC). Let X be a compact, c-convex subset
of � and ρ in Pac(X) ∩ C0,α(X) for some α in (0, 1]. Then the Kantorovich functional 8
is uniformly C2,α on the set

Kε := {ψ : Y → R | ∀y ∈ Y, ρ(Lagy(ψ)) > ε} (4.1)

and its Hessian is given by (1.8). In addition, the C2,α norm of the restriction of 8 to Kε
depends only on ‖ρ‖∞, ε, diam(X), and the constants defined in Remark 4.1 below.

For the remainder of the section, for any point y in Y , we will denote byXy = (expcy)
−1(X)

⊆ Rd the inverse image of the domain X in the exponential chart at y. The set Xy is
convex by c-concavity of X. We consider the functions

fz,y : Xy 3 p 7→ c(expcy(p), y)− c(expcy(p), z),

which are quasi-concave by (QC). The main difficulty in deducing Theorem 4.1 from
Theorem 3.1 is to establish the quantitative transversality condition (T) introduced on
p. 2615 for the family (fz,y)z∈Y\{y}.

Remark 4.1 (Constants). The C2,α norm of the restriction of 8 to Kε explicitly depends
on the following constants, whose finiteness (or positivity) follows from the compactness
of the domain X, the finiteness of the set Y and the conditions (Reg), (Twist), and (QC):

εtw := min
x∈X

min
y,z∈Y
y 6=z

‖Dxc(x, y)− Dxc(x, z)‖g > 0,

C∇ := max
(x,y)∈X×Y

‖Dxc(x, y)‖g < +∞,

Cexp := max
y∈Y

max{‖expcy ‖Lip(Xy ), ‖(expcy)
−1
‖Lip(X)} < +∞, (4.2)

where we recall that Xy := exp−1
y (X). Our estimates will also rely on the following

constants involving the differential of the exponential maps. As before, the tangent spaces
Tx� are endowed with the Riemannian metric g from �. We set

Ccond := max
y∈Y

max
p∈Xy

cond(D expcy |p),

Cdet := max
y∈Y
‖det(D expcy)‖Lip(Xy ),

where cond(A) is the condition number of a linear map A on a finite-dimensional normed
space and det(A) is the determinant of A. The quantitative transversality estimates involve
all the above constants in an explicit way (see (4.14)).
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Remark 4.2. Even in the Euclidean case, one needs a lower bound on the volume of
Laguerre cells in order to establish the second-differentiability of the functional 8. Indeed,
let y± = ±1, y0 = 0, and Y = {y−, y0, y+} ⊂ R. Consider the cost c(x, y) = −xy and
the density ρ = 1 on X = [−1/2, 1/2]. Let ϕτ ∈ RY be defined by ϕ(y±) = 1/2 and
ϕ(y0) = τ . A simple calculation gives, for τ ≥ 0,

∂8

∂1y0

(ψτ ) = max(1− 2τ, 0),

which is not differentiable at τ = 1/2, even though (Reg), (Twist), and (QC) are all
satisfied.

Outline. In Section 4.1, we establish a part of the transversality condition using elementary
properties of convex sets (Proposition 4.2). We establish in Section 4.2 a second transver-
sality condition using additional assumptions and proceed in Section 4.3 to the proof of
Theorem 4.1. In Section 4.4, we propose an alternative transversality estimate when Y is a
sample subset of a target domain �′ (Proposition 4.8).

4.1. Lower transversality estimates

Next, we undertake a series of proofs to obtain explicit constants in the transversality
estimate (T), which depend on the choices of cost, domains, and dimension. Consider the
Laguerre cell of a point y in Y in its own exponential chart, that is,

Ly(ψ) := (expcy)
−1(Lagy(ψ)) = {p ∈ Xy | fz,y(p) ≤ ψ(z)− ψ(y)}.

The set Ly(ψ) is the intersection of sublevel sets of the functions fz,y , and is therefore
a convex subset of Xy by condition (QC). The first proposition establishes that two unit
outer normals to Ly with the same basepoint cannot be near-opposite. Recall the definition
of the normal cone from (3.2).

Proposition 4.2. Assume that ψ lies in Kε/2 (see (4.1)). For any y in Y , any point p in
∂Ly(ψ) and any unit normal vectors v,w ∈ NpLy(ψ) one has

〈v | w〉 ≥ −1+ δ2
0, (4.3)

where δ0 := ε/(2d−1
‖ρ‖∞C

2d
exp diam(X)d) ≤ 1.

The proof of this proposition follows from a general lemma about convex sets. By convexity
(QC), the setLy(ψ) is contained in an intersection of two half-spaces with outward normals
v and w at p, giving an upper bound on its volume in term of its diameter and the angle
between v and w (see Figure 2). On the other hand, we know that the volume of Ly(ψ) is
bounded from below by a constant depending on ε. Comparing these bounds will give us
the one-sided estimate (4.3).
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v

w

K
θ

≤ dia
m(
K)

Fig. 2. Bound on the volume of a convex set K as a function of the angle between two normal
vectors v,w at the same point and the diameter of K (see Lemma 4.3).

Lemma 4.3. Let K be a bounded convex set in Rd , let p be a boundary point of K and
let v,w be two unit (outward) normal vectors to K at p. Then

−1+ δ2
K ≤ 〈v | w〉 where δK =

Hd(K)

2d−2 diam(K)d
≤ 1.

Proof. The left-hand side of the inequality is non-positive, so the inequality needs only to
be proven when 〈v | w〉 ≤ 0, which we assume from now on. Making a rotation of axes and
a translation if necessary, we assume that p is the origin and the unit vectors span the first
two coordinates of Rd . Then, letting H := {p | 〈p | v〉 ≤ 0}, H ′ := {p | 〈p | w〉 ≤ 0}
and D be the two-dimensional disc centered at 0 of radius diam(K), one has

K ⊆ H ∩H ′ ∩ (D × [− diam(K), diam(K)]d−2).

The intersection H ∩H ′ ∩D is an angular sector of the disc D, whose angle is equal to
θ := π − arccos(〈v | w〉) (see Figure 2). Therefore,

Hd(K) ≤ Hd
(
H ∩H ′ ∩ (D × [− diam(K), diam(K)]d−2)

)
≤ 2d−2 diam(K)d tan(θ/2). (4.4)

Using the expression of cos(θ) in terms of tan(θ/2) and recalling 〈v | w〉 ≤ 0 yields

tan(θ/2) =

√
1+ 〈v | w〉
1− 〈v | w〉

≤
√

1+ 〈v | w〉. (4.5)

The lemma follows directly from (4.4)–(4.5). ut

Proof of Proposition 4.2. By definition of the bi-Lipschitz constant Cexp,

Hd(Ly(ψ)) ≥ ε/(2Cdexp‖ρ‖∞) and diam(Ly(ψ)) ≤ Cexp diam(X).

Applying the above lemma to the two outward normals v,w at p, we get

〈v | w〉 + 1 ≥
Hd(Ly(ψ))

2

4d−2 diam(Ly(ψ))2d
≥

ε2

4d−1C4d
exp‖ρ‖

2
∞ diam(X)2d

. ut

We also record the following lemma for later use.
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Lemma 4.4. Let y be in Y and let p be a point of Ly(ψ) such that for some z 6= y,
fz,y(p) = ψ(z)− ψ(y). Then the point p′ := (expcz)

−1(expcy(p)) belongs to Lz(ψ) and
the vector ∇fy,z(p) lies in the normal cone Np′Lz(ψ).
Proof. We introduce the point x = expcy(p). The hypothesis is equivalent to c(x, y) +
ψ(y) = c(x, z)+ψ(z). Since p belongs to Ly(ψ), the point x belongs to Lagy(ψ). Then,
for any z′ ∈ Y ,

c(x, z)+ ψ(z) = c(x, y)+ ψ(y) ≤ c(x, z′)+ ψ(z′),

thus establishing that x ∈ Lagz(ψ) or equivalently p′ ∈ Lz(ψ). ut

4.2. Upper transversality estimates

We now turn to the proof of the quantitative transversality estimates. We begin with a
bound which involves the condition number of the differential of an exponential map (see
Remark 4.1). The advantage of this bound is that we do not have to assume that the points
in Y are sampled from a continuous domain. A second transversality estimate is presented
in §4.4.

Notation. We introduce notation that will be used throughout this section. We fix a point
y0 in Y and an arbitrary ordering of the remaining points, so that Y = {y0, y1, . . . , yN }.
We define X̂ := Xy0 and for every index i ∈ {1, . . . , N} we put

fi := fyi ,y0 : X̂ 3 p 7→ c(expcy0
(p), y0)− c(expcy0

(p), yi).

By the (Twist) condition, the functions f1, . . . , fN satisfy the non-degeneracy condition
(ND), and we have the following inequalities:

εnd := min
i,j 6=0

min
p∈Xy0

‖∇fi(p)−∇fj (p)‖ ≥ C
−1
expεtw > 0, (4.6)

sup
i 6=0

sup
p∈Xy0

‖∇fi(p)‖ ≤ CexpC∇ . (4.7)

To any function ψ : Y → R we associate the vector

λψ := (ψ(y1)− ψ(y0), . . . , ψ(yN )− ψ(y0)) ∈ RN . (4.8)

We also consider the same family of convex set as in Section 3:

K(λ) = {p ∈ X̂ | ∀1 ≤ i ≤ N, fi(p) ≤ λi},

so that K(λψ ) = (expcy0
)−1(Lagy0

(ψ)).

Proposition 4.5. Assume that λ := λψ where ψ ∈ Kε/2 and let p ∈ K(λ).

Case I: If fi(p) = λi and fj (p) = λj for i 6= j in {1, . . . , N}, then(
〈∇fi(p) | ∇fj (p)〉

‖∇fi(p)‖ ‖∇fj (p)‖

)2

≤ 1− δ2
1 . (4.9)
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Case II: If p ∈ ∂X̂ and fi(p) = λi for some i in {1, . . . , N}, then

∀w ∈ NpX̂,
(
〈∇fi(p) | w〉

‖∇fi(p)‖ ‖w‖

)2

≤ 1− δ2
1 . (4.10)

In the above inequalities,

δ1 :=
εndδ0

2CexpC∇C
2
cond

.

By assumption, each Laguerre cell associated to ψ contains a mass of at least ε/2. This
allows us to apply Proposition 4.2, ensuring that normal vectors to Laguerre cells in their ex-
ponential charts cannot be near-opposite. We denote Li :=Lyi (ψ)= (expcyi )

−1(Lagyi (ψ))
for brevity.

The proposition also relies on two simple lemmas. The first lemma shows the effect of
a diffeomorphism on the normal cone to a convex set when its image is also convex.

Lemma 4.6. Let K ⊂ Rd be a compact, convex set, let F be a C1 diffeomorphism from
an open neighborhood of K to an open subset of Rd , and assume that F(K) is also a
convex set. Then, for any point x in ∂K ,

NF(x)(F (K)) = [DF−1
F(x)]

∗(NxK),

where A∗ denotes the adjoint of A.

Proof. Consider x ∈ ∂K and v ∈ NxK , and define ϕ(z) := 〈F−1(z) − x | v〉. Since v
is an outer normal to K at x, the restriction of ϕ to F(K) is non-positive. Since F(K) is
convex, for any point y ∈ K the set F(K) contains the segment [F(x), F (y)]. Therefore

0 ≥ ϕ((1− t)F (x)+ tF (y))
≥ ϕ(F (x))+ t〈∇ϕ(F (x)) | F(y)− F(x)〉 − o(t)

= t〈[DF−1
F(x)]

∗(v) | F(y)− F(x)〉 − o(t),

where we have used ϕ(F (x)) = 0 and ∇ϕ(F (x)) = [DF−1
F(x)]

∗(v) to obtain the equality
at the end. Dividing by t and taking the limit as t goes to zero, we see that

∀y ∈ K, 〈[DF−1
F(x)]

∗(v) | F(y)− F(x)〉 ≤ 0,

thus showing that [DF−1
F(x)]

∗(v) belongs to the normal cone to F(K) at F(x). The converse
inclusion follows from the symmetry of the problem. ut

The second lemma compares the angle between two vectors and the angle between their
images under a linear map, using the generalized Wiedlandt inequality (see [17, Section
3.4]). We identify Rd with its tangent and cotangent spaces through the Euclidean structure.
We denote the adjoint of the derivative of the exponential map expcy at a point p in Xy by

(D expcyi )
∗
|p : T∗expcyi (p)

�→ T∗pR
d ∼= Rd ,
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Lemma 4.7. Let yk 6= y` ∈ Y , let x ∈ X and set pk := (expcyk )
−1(x), p` := (expcy`)

−1(x)

and

A := (D expcyk |pk )
∗
◦ [(D expcyl |pl )

∗
]
−1
: T∗p`R

d
→ T∗pkR

d .

Then, for all v, w in Rd ,

C−4
cond

(
1+
〈v | w〉

‖v‖ ‖w‖

)
≤ 1+

〈Av | Aw〉

‖Av‖ ‖Aw‖
≤ C4

cond

(
1+
〈v | w〉

‖v‖ ‖w‖

)
.

Proof. Indeed, let θ be the angle between v and w, and θ ′ the angle between Av and Aw,
both in the interval (0, π). Let t := tan(θ/2) and t ′ := tan(θ ′/2). The generalized Wied-
landt inequality in [17, Section 3.4] asserts (1/cond(A))t ≤ t ′ ≤ cond(A)t . Expressing
cos(θ) in terms of t = tan(θ/2), we obtain

1+ cos(θ ′) = 1+
1− t ′2

1+ t ′2
=

2
1+ t ′2

≤ cond(A)2(1+ cos(θ)).

We deduce the second inequality of the conclusion by using cond(A∗2[A
∗

1]
−1) ≤

cond(A1) cond(A2) and the definition of the constant Ccond. For the first inequality, simply
note that cond(A−1) = cond(A). ut

Proof of Proposition 4.5, Case I. We let

V := ∇fi(p) = ∇fyi ,y0(p), W := ∇fj (p) = ∇fyj ,y0(p),

v :=
V

‖V ‖
, w :=

W

‖W‖
.

Switching the indices i and j if necessary, we assume that ‖V ‖ ≤ ‖W‖. The proof depends
on the sign of 〈W − V | V 〉 (see Remark 4.3 below for the significance of that sign).
Assume first 〈W − V | V 〉 ≤ 0, and let αv := 1/‖V ‖ and αw := 1/‖W‖. Then

1− 〈v | w〉 = 1
2‖v − w‖

2
=

1
2‖αw(W − V )− (αv − αw)V ‖

2

=
1
2α

2
w‖W − V ‖

2
+

1
2 (αv − αw)

2
‖V ‖2 − αw(αv − αw)〈W − V | V 〉.

Using αw ≤ αv and ‖W − V ‖ ≥ εnd we end up with

1− 〈v | w〉2 ≥ 1− 〈v | w〉 ≥
1
2
α2
w‖W − V ‖

2

≥
1
2

ε2
nd

C2
expC

2
∇

≥
ε2

ndδ
2
0

4C2
expC

2
∇
C4

cond
= δ2

1,

where we have used (4.6) and (4.7), δ0 ≤ 1 and Ccond ≥ 1. This establishes the desired
bound when 〈v | w〉 ∈ [0, 1]. If 〈v | w〉 ∈ [−1, 0], we can apply Proposition 4.2 to show
that 1− 〈v | w〉2 ≥ 1+ 〈v | w〉 ≥ δ2

0 ≥ δ
2
1, as desired.
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Now suppose 〈W − V | V 〉 ≥ 0. A slightly tedious computation gives

〈v | w〉2 = 1−
‖W − V ‖2

‖W‖2
+
〈W − V | v〉2

‖W‖2
= 1−

‖W − V ‖2

‖W‖2

(
1−
〈W − V | v〉2

‖W − V ‖2

)
≤ 1−

ε2
nd

C2
expC

2
∇

(
1−

〈
W − V

‖W − V ‖

∣∣∣∣ v〉), (4.11)

where we have used 〈W − V | V 〉 ≥ 0 with (4.6) and (4.7) to get the last inequality.
We will now apply Proposition 4.2 to the Laguerre cell Li . By Lemma 4.4, the point
pi := (expcyi )

−1(expcy0
(p)) ∈ Xyi belongs to Li and the vectors Vi := ∇fy0,yi (pi) and

Wi := ∇fyj ,yi (pi) are both normal to Li at pi . Proposition 4.2 then shows that the vectors
Vi and Wi satisfy

−1+ δ2
0 ≤
〈Vi | Wi〉

‖Vi‖ ‖Wi‖
. (4.12)

We transfer this inequality to the exponential chart of the original point y0 using the linear
map

A := (D expcy0
|p)
∗
◦ [(D expcyi |pi )

∗
]
−1.

First, note that W − V = AWi and V = −AVi . Applying the generalized Wiedlandt
inequality (Lemma 4.7) and (4.12) we have

1−
〈W − V | v〉

‖W − V ‖
= 1+

〈AWi | AVi〉

‖AWi‖ ‖AVi‖
≥ C−4

cond

(
1+
〈Vi | Wi〉

‖Vi‖ ‖Wi‖

)
≥ C−4

condδ
2
0 ≥ δ

2
1 . (4.13)

Combining this inequality with (4.11) we obtain (4.9) in this case as well. ut

Proof of Proposition 4.5, Case II. Consider V := ∇fi(p) and let W be any vector
in the normal cone NpX̂. When 〈V | W 〉 ≤ 0, the inequality directly follows from
Proposition 4.2, ensuring that normal vectors cannot be near-opposite. We now assume
〈V | W 〉 ≥ 0 and we will apply Proposition 4.2 to the Laguerre cell of yi and transfer
the result to the exponential chart of the point y0. Let pi = (expcyi )

−1(expcy(p)). Then, by
Lemma 4.4, pi belongs to Li and Vi := ∇fy0,yi (pi) is a normal vector to Li at pi . We
define a second normal vector by considering

A := (D expcy0
|p0)
∗
◦ [(D expcyi |pi )

∗
]
−1

and by setting Wi := A−1W ∈ T∗piR
d . By Lemma 4.6, the vector Wi belongs to the

normal cone to Xyi at pi . Moreover, since Li is contained in Xyi and both sets contain pi ,
we have NpiXyi ⊆ NpiLi , thus ensuring that Wi also belongs to the normal cone to Li
at pi . Then, by Proposition 4.2 again,

〈Vi | Wi〉

‖Vi‖ ‖Wi‖
≥ −1+ δ2

0 .
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As before, we transfer this inequality to the exponential chart of the original point y using
the linear map A. We have V = ∇fi(p) = −AVi , and by construction W = AWi . We get
the desired inequality by applying Lemma 4.7:

1−
〈V | W 〉

‖V ‖ ‖W‖
= 1+

〈AVi | AWi〉

‖AVi‖ ‖AWi‖
≥ C−4

cond

(
1+
〈Vi | Wi〉

‖Vi‖ ‖Wi‖

)
≥ C−4

condδ
2
0 ≥ δ

2
1,

and by recalling that 〈V | W 〉 ≥ 0. ut

4.3. Proof of Theorem 4.1

By Theorem 1.1, the second-differentiability of Kantorovich’s functional 8 will follow
from the differentiability of the function

Gy0(ψ) :=

∫
Lagy0

(ψ)

ρ(x) dHd
g(x) =

∫
Ly (ψ)

ρ̂(p) dp,

where we have used the change-of-variable formula with x = expcy0
(p), so that ρ̂ is

the density of the push-forward measure (expcy0
)−1
# (ρHd

g) with respect to the Lebesgue
measure. We recall that

K(λψ ) = (expcy0
)−1(Lagy0

(ψ)),

so that Gy0(ψ) = Ĝ(λψ ) (as defined in (3.1)). The differentiability of Ĝ will be proven
using Theorem 3.1 from the previous section.

Let us fix a function ψ0 in Kε and recall that λ0 := λψ0 . By Proposition 2.3 there exists
a positive constant Ttr such that every functionψ on Y satisfying ‖ψ−ψ0‖∞ ≤ Ttr belongs
to Kε/2. Then, by Proposition 4.5, we see that the functions fi satisfy the transversality
condition (T) on the cube λ0 + [−Ttr, Ttr]

N with constant

εtr = δ1 =
εndδ0

2CexpC∇C
2
cond

, (4.14)

where we recall that δ0 = ε/(2d‖ρ‖∞C2d
exp diam(X)d). Note also that since ρ is α-Hölder

and since the exponential map is C1,1, the probability density ρ̂ is also α-Hölder with
constant

‖ρ̂‖C0,α(X̂) ≤ C(‖ρ‖C0,α , Cdet). (4.15)

We can now apply Theorem 3.1. It ensures that the function Ĝ is of class C1,α on the
cube λ0 + [−Ttr, Ttr]

N , so that ∂8/∂1y0 is C1,α on a neighborhood of ψ0. Since this holds
for any point y0 ∈ Y and any function ψ0 in Kε, we have established the C2,α regularity
of 8 on Kε. The claimed dependency of ‖8‖C2,α(Kε) follows from (4.14)–(4.15) and from
Theorem 3.1.

Our goal is now to deduce the formula for the gradient ofG given in Theorem 4.1 (equa-
tion (1.8)) from the formula for the gradient of Ĝ given in Theorem 3.1 (equation (3.3)).
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This is done by looking more closely at the change of variable induced by the exponential
map F := expcy0

: �→ Rd . For ease of notation we let h := c(·, y0)−c(·, yi)λ = fi◦F
−1.

By the definition of push-forward, for any bounded measurable function χ on � we have∫
�̂

χ(F (p))ρ(p) dHd(p) =

∫
�

χ(x)ρ̂(x) dHd
g(x).

Multiplying χ by the characteristic function of h−1([t, s]) gives∫
f−1
i ([t,s])

χ(F (p))ρ̂(p) dHd(p) =

∫
h−1([t,s])

χ(x)ρ(x) dHd
g(x).

Applying the coarea formula on both sides, we get∫ s

t

∫
f−1
i (r)

χ(F (p))ρ̂(p)

‖∇fi(p)‖
dHd−1(p) dr =

∫ s

t

∫
h−1(r)

χ(x)ρ(x)

‖∇h(x)‖g
dHd−1

g (x) dr. (4.16)

Using the C1,1 smoothness of the functions fi and the (Twist) condition, we can see that
for any χ in C0

c (�), the two inner integrals

r 7→

∫
f−1
i (r)

χ(F (p))ρ̂(p)

‖∇fi(p)‖
dHd−1(p) and r 7→

∫
h−1(r)

χ(x)ρ(x)

‖∇h(x)‖g
dHd−1

g (x)

depend continuously on r . Using the continuity of these functions in r , equation (4.16)
and the Fundamental Theorem of Calculus, we find that for any function χ in C0

c (�) and
any r in R, ∫

f−1
i (r)

χ(F (p))ρ̂(p)

‖∇fi(p)‖
dHd−1(p) =

∫
h−1(r)

χ(x)ρ(x)

‖∇h(x)‖g
dHd−1

g (x).

By Tietze’s extension theorem, (Twist), and (Reg), the level set S := h−1(r) is a C1,1

hypersurface of �. Thus every function in C0
c (S) can be extended to a function in C0

c (�).
The previous equality therefore holds for any χ in C0

c (S), and by density, also for any
function χ in L1(S). Applying this with χ equal to the indicator function of the interface
between the Laguerre cell of y0 and the cell of yi , we get the desired formula for the partial
derivatives:

∂Gi

∂ψi
(ψ) =

∂Ĝ

∂λi
(λψ ) =

∫
Ly0 (ψ)∩f

−1
i (ψ(yi )−ψ(y0))

ρ̂(p)

‖∇fi(p)‖
dHd−1(p)

=

∫
Lagy0

(ψ)∩Lagyi (ψ)

ρ(x)

‖Dyc(x, y0)− Dyc(x, yi)‖g
dHd−1

g (x).



A Newton algorithm for semi-discrete optimal transport 2627

4.4. Alternative upper transversality estimates

Finally, we state an alternative upper transversality estimate, under the assumption that the
points in Y are sampled from some target domain3, along with some convexity conditions.
Specifically, let 3 be a bounded, open subset in some Riemannian manifold, with Y ⊂ 3.
We then assume that for any x′ ∈ �cl, the mapping

y 7→ −Dxc(x′, y)

is a diffeomorphism onto its range, and we denote the inverse by expc
x′

. We will also
assume that (expcx)

−1(3) is convex for all x ∈ �, and finally that for any x, x′ ∈ �,
q0, q1 ∈ (expc

x′
)−1(3), and t ∈ [0, 1],

−c(x, expcx′((1− t)q0 + tq1))+ c(x
′, expcx′((1− t)q0 + tq1)))

≤ max
{
−c(x, expcx′(q0))+ c(x

′, expcx′(q0)),−c(x, expcx′(q1))+ c(x
′, expcx′(q1))

}
.

(4.17)

Note that this last inequality is nothing but quasi-concavity of c(x′, ·) − c(x, ·) in the
global coordinate chart of 3 defined by expc

x′
. For more on these conditions, see Remark

4.4 below.
Proposition 4.8 can be applied to provide an alternative bound in the transversality

condition (T) when the point p0 ∈ ∂K(λ) is in the interior of X (so in particular, when
dealing with Laguerre cells that do not intersect ∂X). The advantage of this bound is that
it does not require knowledge of the condition number Ccond.

Recall that we have fixed some point y0 ∈ Y = {y1, . . . , yN } and for any index
i ∈ {1, . . . , N} we use the notation

fi(p) = fyi ,y0(p) = c(expcy0
p, y0)− c(expcy0

p, yi).

We also redefine the constants C∇ and Cexp so that in their definitions, the maximum of y
ranges over the domain 3 instead of just Y .

Proposition 4.8. Suppose

‖λ‖ < Ttr <
εεnd

8C2d−1
exp ‖ρ‖∞Hd−1

g (∂X)
,

and p0 ∈ K(λ) with fi(p0) = λi and fj (p0) = λj for some i 6= j in {1, . . . , N}. Then(
〈∇fi(p0) | ∇fj (p0)〉

‖∇fi(p0)‖ ‖∇fj (p0)‖

)2

≤ (1− δ2)
2, (4.18)

where

δ2 :=

(
εεnd

4
√

2C2
∇
C2d+2

exp ‖ρ‖∞Hd−1
g (∂X)

)2

.
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Remark 4.3. Before embarking on the proof of this “continuous” upper transversality
estimate, we compare some key features of its proof with that of the “discrete” upper
transversality estimate, Proposition 4.5. By considering the case when the two vectors
∇fi(p0) and ∇fj (p0) are collinear, we can see that both proofs rely on the same core idea.
In this case, ∇fi(p0) and ∇fj (p0) are outward normal vectors (in coordinates induced by
expcy0

, see Remark 4.4) to the sublevel sets {−c(·, y0)+ ψ(y0) ≤ −c(·, yi)+ ψ(yi)} and
{−c(·, y0)+ψ(y0) ≤ −c(·, yj )+ψ(yj )} respectively at p0 which lies on the intersection
of their boundaries. Since these sets are convex in the associated coordinates, this will cause
the Laguerre cell associated to yi to be trapped in a lower-dimensional set, giving it zero
mass, which is a contradiction. The difference between the two proofs lies in quantifying
this estimate. In the discrete version of the estimate we do one of two things depending
on the sign of the inner product 〈W − V | V 〉 (see proof of Proposition 4.5). When the
inner product 〈W − V, V 〉 is negative, since ‖W‖ ≥ ‖V ‖ and ‖W − V ‖ has a positive
lower bound (by the condition (ND)), it can be seen that there is a cone whose axis is in
the direction of V and whose opening angle can be estimated from below, and the vector
W points to the outside of this cone. In the other case W − V and −V are, respectively,
outward normal vectors to the sublevel sets {−c(·, yi)+ ψ(yi) ≤ −c(·, yj )+ ψ(yj )} and
{−c(·, yi) + ψ(yi) ≤ −c(·, y0) + ψ(y0)}, viewed in coordinates given by expcyi . Thus
the lower transversality estimate (Proposition 4.2) can be applied to obtain a quantitative
bound, but at the price of involving the condition number since we have made a change of
coordinates. In the continuous version, there is no change of coordinates, instead we make
a rotation to align ∇fj (p0) and ∇fi(p0), then estimate the error induced by this rotation
using (4.17), in a vein similar to calculations from [16, Remark 2.5, Proof of Lemma 4.7].

Proof of Proposition 4.8. Let us again write

V := ∇fi(p0), W := ∇fj (p0), v :=
V

‖V ‖
, w :=

W

‖W‖
,

and assume εnd < ‖V ‖ ≤ ‖W‖ and 〈v | w〉 > 0. Let us also define

x0 := expcy0
(p0), q0 := −Dxc(x0, y0), q1 := −Dxc(x0, yj ).

A quick calculation yields

q0 = [(D expcy0
|p0)
∗
]
−1(−∇pc(expcy0

(p), y0)|p=p0),

q1 = [(D expcy0
|p0)
∗
]
−1(W)+ q0.

Now we define

q ′ := [(D expcy0
|p0)
∗
]
−1(‖V ‖w)+ q0;

since ‖V ‖ ≤ ‖W‖, the above calculation implies that q ′ lies on the line segment between
q0 and q1; since (expcx0

)−1(3) is convex, we have q ′ ∈ (expcx0
)−1(3) as well.

Thus we can define

y′i := expcx0
(q ′),

f̃i(p) := −c(expcy0
(p), y′i)+ c(expcy0

(p), y0)+ c(x0, y
′

i)− c(x0, y0)+ λi,
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and by (4.17) applied with the choices x := expcy0
(p), x′ := x0, t := ‖V ‖/‖W‖, and

q0, q1 as defined above, we will obtain, for all p ∈ (expcy0
)−1(�),

f̃i(p)− λi ≤ max{0, fj (p)− λj }, (4.19)

while another quick calculation yields

yi = expcx0
([(D expcy0

|p0)
∗
]
−1(V )+ q0).

Now note that

|−c(expcy0
(p), y′i)+ c(expcy0

(p), yi)|

≤ sup
(x,q)∈�×(expcx0

)−1(3)

∥∥(D expcx0
|q)
∗(−Dyc(x, expcx0

(q)))
∥∥

·
∥∥[(D expcy0

|p0)
∗
]
−1(‖V ‖w − V )

∥∥
≤ C∇C

2
exp
∥∥‖V ‖w − V ∥∥,

where we have used the fact that if y = expcx0
(q), then (D expcx0

|q)
∗
= D expcy |−Dxc(x0,y).

As a result we obtain

|f̃i(p)− fi(p)|
2
= |−c(expcy0

(p), y′i)+ c(expcy0
(p), yi)|

2

≤ (C∇C
2
exp)

2∥∥V − ‖V ‖w∥∥2
= 2(C∇C2

exp)
2
‖V ‖2(1− 〈v | w〉)

≤ 2(C∇C2
exp)

2(CexpC∇)
2(1− 〈v | w〉).

Combining this with (4.19) we then have, for any p ∈ (expcy0
)−1(�),

fi(p)− λi ≤ max{0, fj (p)− λj } +
√

2C3
expC

2
∇

√
1− 〈v | w〉,

or after rearranging and using ‖λ‖ < Ttr,

1− 〈v | w〉 ≥ sup
p∈(expcy0

)−1(�)

(fi(p)−max{0, fj (p)} − 2Ttr)
2

2(C3
expC

2
∇
)2

. (4.20)

We now make the following observation. Let us write Xi := (expcyi )
−1(X). Then for

any t , s > 0, we can estimate the volume of Xi ∩ {fy0,yi ≤ −t} ∩ {fyj ,yi ≤ −s} from
below by

Hd(Xi ∩ {fy0,yi ≤ −t} ∩ {fyj ,yi ≤ −s})

≥ Hd(Xi ∩ {fy0,yi ≤ 0} ∩ {fyj ,yi ≤ 0})−Hd(Xi ∩ {−t < fy0,yi ≤ 0})

−Hd(Xi ∩ {−s < fyj ,yi ≤ 0}).

Using Li ⊂ {fy0,yi ≤ 0} ∩ {fyj ,yi ≤ 0}, we can bound the first term from below as

Hd(Xi ∩ {fy0,yi ≤ 0} ∩ {fyj ,yi ≤ 0}) ≥
ε

Cdexp‖ρ‖∞
.
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For the second term, by the coarea formula we can write

Hd(Xi ∩ {−t < fy0,yi ≤ 0}) ≤
∫ 0

−t

∫
Xi∩{fy0,yi=z}

1
‖∇fy0,yi (p)‖

dHd−1(p) dz

≤
tHd−1(∂Xi)

εnd
≤
tCd−1

exp Hd−1
g (∂X)

εnd
,

where to obtain the second line we have again used the fact that for every z ∈ R the set
Xi ∩ {fy0,yi = z} is contained in the boundary of a convex subset of Xi , in conjunction
with [21, Remark 5.2]. By a similar bound on the third term, we see that as long as

max{t, s} <
εεnd

2C2d−1
exp ‖ρ‖∞Hd−1

g (∂X)

we have

Hd(Xi ∩ {fy0,yi ≤ −t} ∩ {fyj ,yi ≤ −s}) > 0,

thus in particular (by continuity of fy0,yi and fyj ,yi ) there must exist a point p′c ∈ Xi for
which

max{fy0,yi (p
′
c), fyj ,yi (p

′
c)} ≤ −

εεnd

2C2d−1
exp ‖ρ‖∞Hd−1

g (∂X)
.

Translating this back into coordinates in (expc0)
−1(X) and in terms of fi , fj , we see there

exists a point pc ∈ (expc0)
−1(X) for which

fi(pc)−max{0, fj (pc)} ≥
εεnd

2C2d−1
exp ‖ρ‖∞Hd−1

g (∂X)
.

Thus if Ttr ≤
εεnd

8C2d−1
exp ‖ρ‖∞Hd−1

g (∂X)
, then combining this with (4.20) we will obtain the

bound (4.18) as desired. ut

Remark 4.4. Under a set of standard conditions, we can obtain both (QC) and (4.17).
Let� and3 be bounded and smooth domains in d-dimensional Riemannian manifolds

and take a cost c ∈ C4(�×3). Also assume:

• c satisfies the (Twist) condition: for every x ∈ �, the map 3 3 y 7→ −Dxc(x, y)

is a diffeomorphism onto its image 3x := −Dxc(x,3) ⊂ T ∗x � and we define the
c-exponential map expcx : 3x → 3 by expcx = (−Dxc(x, ·))−1.
• the cost c∗(x, y) := c(y, x) satisfies the (Twist) condition: for every y ∈ 3, we can

define the c∗-exponential map expcy : �y → � on the set �y := −Dyc(�, y) ⊂ T
∗
y 3

by expcy = (−Dyc(·, y))−1.
• (expcx)

−1(3) is convex for each x ∈ �.
• (expc

∗

y )
−1(�) is convex for each y ∈ 3.

• det D2
xyc(x, y) 6= 0 for all (x, y) ∈ �×3.
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• For any (x, y) ∈ �×3 and η ∈ T ∗x �, V ∈ Tx� with η(V ) = 0,

−(cij,pq − cij,rc
r,scs,pq)c

p,kcq,lV iV jηkηl ≥ 0; (A3w)

here indices before a comma are derivatives on � and after a comma on 3, for fixed
coordinate systems, and a pair of raised indices denotes the inverse of a matrix. This
last condition (A3w) originates (in a stronger version) in [26] related to regularity of
optimal transport. [23, Theorem 3.2] in the Euclidean case and [20, Theorem 4.10] in the
general manifold case show the above conditions imply (QC) and (4.17). In fact, they are
equivalent as seen in [23]. This geometric interpretation is a key ingredient in showing
regularity in the optimal transport problem in the vein of Caffarelli’s classical work [7]
(see [13, 16]).

5. Strong concavity of Kantorovich’s functional

In this section we establish the strong concavity of Kantorovich’s functional 8 over some
suitable domain of RY . As explained in the introduction, 8 is invariant under addition of a
constant, so we must restrict ourselves to the orthogonal complement EY of the space of
constant functions. Moreover, we will consider the set Kε defined by (4.1), which can be
thought of as the space of strictly c-concave functions. Recall that the conditions (Reg),
(Twist), (QC), and (PW) are defined in the introduction, on pages 2604, 2605, 2608, and
2609 respectively.

Theorem 5.1. Assume (Reg), (Twist), and (QC). Let X be a compact, c-convex subset
of �, and ρ be a continuous probability density on X satisfying (PW). Then

∀ψ ∈ Kε, ∀v ∈ EY , 〈D28(ψ)v | v〉 ≤ −C · ε3
‖v‖2,

where C is a positive constant defined in (5.9), and depends on ‖ρ‖∞, Hd−1
g (∂X), and

Cexp, C∇ , and εtw from Remark 4.1.

Remark 5.1. Note that the upper bound on the largest non-zero eigenvalue of D28(ψ)

decreases as N grows to infinity, since ε is of the order of 1/N . A possible place for
improvement is the reverse isoperimetric inequality stated in (5.6). Currently, we are vastly
overestimating the size of the boundary of a Laguerre cell by bounding it by the area of
the boundary of the whole domain; additionally we are bounding the density ρ by its
supremum, and paying in terms of the constant Cexp. Note that (5.6) in its current form
can never turn into equality, even for constant density ρ and the quadratic cost function
where Cexp = 1, as equality would only happen for a Laguerre cell that occupied the whole
domain X, which cannot happen as all Laguerre cells have non-zero mass. To improve
the inequality, one could try to control the anisotropy of Laguerre cells and bound the
area of the boundary of a cell by some fraction of the area of ∂X; however, this would
require assumptions on the distribution of the points Y and on ν ∈ P(Y ). We believe
that such an upper bound on the anisotropy of Laguerre cells would be interesting in
itself, and heuristically seems feasible as a discrete analogue of the regularity results
for optimal transport (interpreting the Laguerre cells associated to ψ : Y → R as the
c∗-subdifferentials of ψ).
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Remark 5.2. Note that unlike the domain X, the support of the density ρ need not be
c-convex. In Appendix A we provide an example of a radial measure on Rd whose support
is an annulus (hence is not simply connected) but whose Poincaré–Wirtinger constant Cpw
is nonetheless positive.

The end of the section is devoted to the proof of Theorem 5.1. It relies on the fact that
−D28(ψ) can be regarded as the Laplacian matrix of a weighted graph on Y , whose
first non-zero eigenvalue can be controlled from below using the Cheeger constant of
the weighted graph. In turn, this weighted Cheeger constant can be controlled using the
Poincaré–Wirtinger inequality.

5.1. Poincaré inequality and continuous Cheeger constant

We start by proving that the finiteness of the Poincaré–Wirtinger constant of the weighted
domain (X, ρ) implies the positivity of the weighted Cheeger constant, defined in (5.1).
Below, a Lipschitz domain is the closure of an open set with Lipschitz boundary.

Lemma 5.2. Assume (QC) and that X is compact and c-convex. Then

(i) X is a Lipschitz domain,
(ii) for any ψ ∈ K+ and y in Y , Lagy(ψ) ∩X is a Lipschitz domain.

Proof. By assumption, for any y ∈ Y one can writeX = expcy(Xy) whereXy is a bounded
convex subset of Rd which must have non-empty interior since it supports an absolutely
continuous probability measure. Moreover, the map expcy is a diffeomorphism, hence is
bi-Lipschitz. This implies (i), while (ii) follows from exactly the same arguments, where
we have to remember that ρ(Lagy(ψ)) > 0. ut

Given a Lipschitz domain A of X we write, slightly abusing notation,

|∂A|ρ :=

∫
∂A∩int(X)

ρ(x) dHd−1
g (x) and |A|ρ :=

∫
A

ρ(x) dHd
g(x).

Lemma 5.3. Let X be a compact domain in � and let ρ in C0(X) be a probability density
with finite Poincaré–Wirtinger constant Cpw. Then the weighted Cheeger constant of
(X, ρ) is positive, that is,

h(ρ) := inf
A⊆X

|∂A|ρ

min(|A|ρ, |X \ A|ρ)
≥

2
Cpw

, (5.1)

where the infimum is taken over Lipschitz domains A ⊆ int(X) whose boundary has finite
Hd−1
g -measure.

The proof is based on properties of functions with bounded variation. For more details
on this topic, we refer the reader to [4]. Although the discussion there is on Euclidean
spaces, the relevant results easily extend to the Riemannian case, as expcy serves as a global
coordinate system on all of �.
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Proof of Lemma 5.3. Let A be a Lipschitz domain in int(X). Since A has a Lipschitz
boundary with finite area, its indicator function χA has bounded variation in int(X). By
the density theorem [4, Theorem 10.1.2], there exists a sequence of C1 functions fn on
int(X) that converges to χA in the sense of intermediate convergence (whose definition is
not important here). By (PW),

‖fn − Eρ(fn)‖L1(ρ) ≤ Cpw‖∇fn‖L1(ρ).

Since intermediate convergence is stronger than L1 convergence, the continuity of ρ
implies

lim
n→∞
‖fn − Eρ(fn)‖L1(ρ) = ‖χA − Eρ(χA)‖L1(ρ) = 2|A|ρ |X \ A|ρ .

Note that we have used the fact that ρ is a probability measure, i.e. ρ(X) = 1. Proposi-
tion 10.1.2 of [4] implies that the total variation measure |Dfn| narrowly converges to
|DχA|, which together with the continuity of ρ implies that

∫
�
|Dfn|ρ dHd

g converges to∫
�
|DχA|ρ dHd

g = |∂A|ρ . The relation |Dfn| = ‖∇fn‖gdHd
g then gives

lim
n→∞
‖∇fn‖L1(ρ) ≤ |∂A|ρ .

Combining the previous equations leads to the desired inequality. ut

5.2. Cheeger constant of a graph

The goal of this section is to give a lower bound of the second eigenvalue of −D28(ψ)

in terms of the Cheeger constant of the weighted graph induced by this matrix. An
unoriented weighted graph can always be represented by its adjacency matrix (wyz)(y,z)∈Y 2 ,
a symmetric matrix with zero diagonal entries. We introduce a few definitions from graph
theory, following the conventions of [14].

Definition 5.1. Let (wyz)(y,z)∈Y 2 be a weighted graph over Y . The (weighted) degree of a
vertex y is dy :=

∑
z 6=y wyz. The (weighted) Laplacian is the matrix (Lyz)(y,z)∈Y 2 whose

entries are Lyz = −wyz for y 6= z and Lyy = dy .

Definition 5.2. The Cheeger constant of a weighted graph (wyz)(y,z)∈Y 2 over a point set Y
is given by

h(w) := min
S⊆Y

|∂S|w

min(|S|w, |Y \ S|w)
, where

|∂S|w :=
∑

y∈S, z 6∈S

wyz and |S|w :=
∑
y∈S

dy .

The (weighted) Cheeger inequality bounds from below the first non-zero eigenvalue of
the Laplacian of a weighted graph, denoted λ(w), in terms of its Cheeger constant and
its minimal degree. The formulation we use can be deduced from [14, Corollary 2.2] and
from the inequality 1−

√
1− x2 ≥ x2/2.

Theorem 5.4 (Cheeger inequality). λ(w) ≥ 1
2 h2(w) ·miny∈Y dy .

We now proceed to the proof of the main theorem of this section.
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5.3. Proof of Theorem 5.1

Let ψ be a function in Kε and consider the weighted graph (wyz)(y,z)∈Y 2 given by

wyz := −
∂28

∂1y∂1z
(ψ) =

∫
Lagy,z(ψ)

ρ(x)

‖Dxc(x, y)− Dxc(x, z)‖g
dHd−1

g (x)

for y 6= z in Y , and with zero diagonal entries (wyy = 0). In the formula above, we
use the notation Lagy,z(ψ) = Lagy(ψ) ∩ Lagz(ψ) for the facet between two Laguerre
cells. By construction, the Laplacian matrix of this weighted graph is the Hessian matrix
−D28(ψ), so that Theorem 5.4 directly gives us a lower bound on the first non-zero
eigenvalue of −D28(ψ). To complete the proof, we need to bound the Cheeger constant
and the minimum degree of the graph w from below.

Step 1. The goal here is to bound from below the discrete Cheeger constant h(w) in terms
of the continuous weighted Cheeger constant h(ρ) and the constants introduced in (4.2).
By definition of the constants εtw and C∇ , for any y 6= z in Y one has

εtwwyz ≤ |Lagy,z(ψ)|ρ ≤ 2C∇wyz. (5.2)

Consider a subset S of Y , and let A =
⋃
y∈S Lagy(ψ). Then the intersection of the

boundary of A with X is contained in a union of facets of Laguerre cells, namely

∂A ∩ int(X) ⊆
⋃

y∈S, z 6∈S

Lagy,z(ψ). (5.3)

The two inequalities (5.2) and (5.3) imply a lower bound on the numerator of the Cheeger
constant:

|∂A|ρ ≤
∑

y∈S, z 6∈S

|Lagy,z(ψ)|ρ ≤ 2C∇ |∂S|w. (5.4)

We now need to bound the denominator of the Cheeger constant from above, which requires
controlling the weighted degrees dy . Note that

dy =
∑
z 6=y

wyz ≤
1
εtw

∑
z 6=y

|Lagy,z(ψ)|ρ ≤
1
εtw
|∂ Lagy(ψ)|ρ, (5.5)

where the second inequality comes from the fact that the facets Lagy,z(ψ) form a partition
of the boundary ∂ Lagy(ψ) ∩ int(X) up to an Hd−1

g -negligible set. To see that fact, it
suffices to remark that in the exponential chart of y, the intersection of two distinct facets
adjacent to y has a finite Hd−2

g -measure, as implied by Proposition 3.2.
In order to apply the (continuous) Cheeger inequality, we need to replace the weighted

area of the boundaries of Laguerre cells in (5.5) by the weighted volume of the cells. We
have

Hd−1
g (∂ Lagy(ψ)) ≤ C

d−1
exp Hd−1((expcy)

−1∂ Lagy(ψ))

≤ Cd−1
exp Hd−1(∂Xy) ≤ C

2(d−1)
exp Hd−1

g (∂X).
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The first and third inequalities use the definition of the bi-Lipschitz constant Cexp of
the exponential map, while the second inequality uses the monotonicity of the Hd−1-
measure of the boundary of a convex set with respect to inclusion (see [32, p. 211]). By the
assumption |Lagy(ψ)|ρ ≥ ε, this gives us a (rather crude) reverse isoperimetric inequality

|∂ Lagy(ψ)|ρ ≤ ‖ρ‖∞Hd−1
g (∂ Lagy(ψ))

≤
‖ρ‖∞

ε
C2(d−1)

exp Hd−1
g (∂X)|Lagy(ψ)|ρ . (5.6)

We remark here that the above inequality is never sharp (see also Remark 5.1). Combining
(5.5), (5.6) and |A|ρ =

∑
y∈S |Lagy(ψ)|ρ we obtain

|S|w =
∑
y∈S

dy ≤
1
ε

‖ρ‖∞C
2(d−1)
exp Hd−1

g (∂X)

εtw
|A|ρ .

The same inequality holds for the complement |X \S|. We combine the previous inequality
with (5.4) and with Lemma 5.3 to get a lower bound on the Cheeger constant:

h(w) ≥
εtwε

C
2(d−1)
exp C∇Hd−1

g (∂X)‖ρ‖∞Cpw
. (5.7)

Note that in order to apply Lemma 5.3 we implicitly used the fact that A is a Lipschitz
domain (as a finite union of Lipschitz domains, see Lemma 5.2) whose boundary has finite
Hd−1
g -measure (by (5.6)).

Step 2. In order to apply the Cheeger inequality, we still need to bound from below the
weighted degree dy . By (5.2) one has, in view of the crucial fact that |∂ Lagy(ψ)|ρ is the
measure of ∂ Lagy(ψ) ∩ int(X),

dy =
∑
z 6=y

wyz ≥
1

2C∇

∑
z 6=y

|Lagy,z(ψ)|ρ ≥
1

2C∇
|∂ Lagy(ψ)|ρ .

Taking A = Lagy(ψ) in the definition of the weighted Cheeger constant h(ρ) in Lem-
ma 5.3, one gets

|∂ Lagy(ψ)|ρ ≥ h(ρ)min
(
|Lagy(ψ)|ρ, |X \ Lagy(ψ)|ρ

)
≥ h(ρ)ε.

The last inequality comes from the assumption that each Laguerre cell has a mass greater
than ε and that X \Lagy(ψ) also contains a Laguerre cell (except for the trivial case where
Y is a singleton). We deduce

dy ≥
ε

C∇Cpw
. (5.8)
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Step 3. Combining the Cheeger inequality with (5.7) and (5.8) we have λ(w) ≥ Cε3

where

C :=
ε2

tw

2C4(d−1)
exp C3

∇
(Hd−1

g (∂X))2‖ρ‖2∞C
3
pw

. (5.9)

Since the graph induced by the Hessian is connected, the kernel of −D28(ψ) is equal
to the space of constant functions over Y , implying that Ker(−D28(ψ))⊥ = EY . Then,
using the variational characterization of the first non-zero eigenvalue of the Laplacian
matrix, we get

Cε3
≤ λ(w) = min

v∈EY

〈−D28(ψ) | v〉

‖v‖2
. ut

6. Convergence of the damped Newton algorithm

The goal of this section is to show the convergence of the damped Newton algorithm
for semi-discrete optimal transport. This follows in fact from a more general result. We
establish in Section 6.1 the convergence of the damped Newton algorithm (Algorithm 1)
under general assumptions on the functional. We finally apply this algorithm to the semi-
discrete optimal transport problem, using the intermediate results (regularity and strict
concavity of the Kantorovich functional) proven in Sections 4 and 5.

6.1. General damped Newton algorithm

Recall that Y is a finite set and we denote by RY the space of real functions on Y . We
consider P(Y ), the space of probability measures on Y , as a subset of RY . Finally, we
denote by EY the space of functions on Y that sum to zero. In this section, we show that
Algorithm 1 can be used to solve non-linear equations G(ψ) = µ where µ ∈ P(Y ) and
the map G : RY → P(Y ) satisfies some regularity and monotonicity assumptions.

Proposition 6.1. LetG be a functional from RY to P(Y ) which is invariant under addition
of a constant. Let G(ψ) =

∑
y∈Y Gy(ψ)1y and

Kε = {ψ ∈ RY | ∀y ∈ Y, Gy(ψ) ≥ ε},

and assume that G has the following properties:

(i) (Regularity) For every positive ε, G is C1,α on Kε. Let Lε be the smallest constant
such that

∀ϕ 6= ψ ∈ Kε, ‖G(ϕ)−G(ψ)‖

‖ϕ − ψ‖
+
‖DG(ϕ)− DG(ψ)‖
‖ϕ − ψ‖α

≤ Lε.

(ii) (Uniform monotonicity) For every ε > 0, there exists a positive constant κε such that
G is κε-uniformly monotone on Kε ∩ EY :

∀ψ ∈ Kε,∀v ∈ EY , 〈v | DG(ψ)v〉 ≥ κε‖v‖2.
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Now, let µ ∈ P(Y ) and let ψ0 be a function on Y such that the constant ε0 defined in
(1.6) is positive. Set κ := min(κε0/2, 1) and L := max(Lε0/2, 1). Then the iterates (ψk) of
Algorithm 1 satisfy

‖G(ψk+1)− µ‖ ≤ (1− τ k/2)‖G(ψk)− µ‖, where

τ k := min
(

κ1+1/αε

d1/αL1/α‖G(ψk)− µ‖
, 1
)
. (6.1)

In addition, as soon as τ k = 1 one has

‖G(ψk+1)− µ‖ ≤
L‖G(ψk)− µ‖

1+α

κ1+α .

In particular, the damped Newton algorithm converges globally with linear speed and
locally with superlinear speed (quadratic speed if α = 1).

Proof. We set ε := ε0, L := max(Lε/2, 1) and κ := min(κε/2, 1). First, we remark that
for every ψ ∈ Kε/2, the pseudo-inverse DG+(ψ) maps the subspace EY to itself. The
uniform monotonicity of G therefore implies that ‖DG+(ψ)‖ ≤ 1/κ , where ‖ · ‖ is the
operator norm on RY .

We start by the analysis of a single iteration of the algorithm. We let ψ := ψk ∈ Kε,
define v := DG(ψ)+(G(ψ)− µ) and ψτ := ψ − τv. Since the pseudo-inverse DG+(ψ)
is 1/κ-Lipschitz, one has ‖v‖ ≤ ‖G(ψ)−µ‖/κ . Now let τ1 be the largest time before the
curve ψσ leaves Kε/2. In particular, ψτ1 lies at the boundary of Kε/2, meaning that there
must exist a point y in Y such that Gy(ψτ1) = ε/2. This implies that ‖G(ψτ1)−G(ψ)‖

≥ ε/2, and using the Lipschitz bound on G we obtain a lower bound on τ1:

ε

2
≤ ‖G(ψτ1)−G(ψ)‖ ≤ Lτ1‖v‖ ≤

Lτ1

κ
‖G(ψ)− µ‖.

This implies that τ1 is necessarily larger than κε/(2L‖G(ψ)− µ‖). We have now estab-
lished that the curve τ 7→ ψτ remains in Kε/2 before time τ1, implying that the function
[0, τ1] 3 τ 7→ G(ψτ ) is uniformly C1,α . Applying Taylor’s formula we get

G(ψτ ) = G
(
ψ − τDG(ψ)+(G(ψ)− µ)

)
= (1− τ)G(ψ)+ τµ+ R(τ), (6.2)

where, on account of v = DG(ψ)+(G(ψ)− µ) and the α-Hölder property for DG,

‖R(τ)‖ =

∥∥∥∥∫ τ

0
(DG(ψσ )− DG(ψ))v dσ

∥∥∥∥
≤

L

α + 1
τα+1
‖v‖α+1

≤
L‖G(ψ)− µ‖1+α

κ1+α τ 1+α. (6.3)

For every y ∈ Y , using µy ≥ 2ε (by (1.6)) and Gy(ψ) ≥ ε, one gets

Gy(ψτ ) ≥ (1− τ)Gy(ψ)+ τµy + Ry(τ ) ≥ (1+ τ)ε − ‖R(τ)‖.
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If τ is chosen such that ‖R(τ)‖ ≤ τε we will haveGy(ψτ ) ≥ ε for all y in Y and therefore
ψτ will belong to Kε. Thanks to our estimate on R(τ) this will be true provided that

τ ≤ τ2 := min
(
τ1,

κ1+1/αε1/α

L1/α‖G(ψ)− µ‖1+1/α

)
.

Finally, we establish the second inequality required by Step 2 of the algorithm. To do that,
we subtract µ from both sides in (6.2) to obtain

G(ψτ )− µ = (1− τ)(G(ψ)− µ)+ R(τ). (6.4)

In order to get ‖G(ψτ ) − µ‖ ≤ (1 − τ/2)‖G(ψ) − µ‖, it is sufficient to establish that
‖R(τ)‖ ≤ τ/2‖G(ψ)− µ‖. Using the estimation on ‖R(τ)‖ again, we see that it suffices
to take

τ ≤ τ3 := min
(
τ2,

κ1+1/α

L1/α‖G(ψ)− µ‖21/α , 1
)
.

Finally, using L ≥ 1, κ ≤ 1 and ‖G(ψ) − µ‖ ≤ d (since G(ψ) and µ are probability
measures), we can establish that τ3 ≥ τ k where τ k is defined in (6.1). This ensures the
first estimate on the improvement of the error between two successive steps.

By this estimate, there exists k0 such that τ k = 1 for k ≥ k0. Then one can use (6.4) to
get ‖G(ψk+1)−µ‖ ≤ ‖R(τ)‖. We obtain the second estimate of the theorem by plugging
in (6.3). ut

6.2. Proof of Theorem 1.5

Proposition 6.1 can be directly applied to the gradient of the Kantorovich functional, or
more precisely to

G(ψ) :=
∑
y∈Y

ρ(Lagy(ψ))1y = ∇8(ψ)+ µ.

In that case, the set Kε is given by

Kε = {ψ ∈ RY | ∀y ∈ Y, ρ(Lagy(ψ)) ≥ ε}.

We have assumed that the probability density ρ is in C0,α(X) where X is a c-convex,
compact subset of �. Then, by Theorem 4.1, for any ε > 0, the map G is uniformly
C1,α over Kε. This ensures that the (Regularity) condition of Proposition 6.1 is satisfied.
Furthermore, since we have also assumed that ρ satisfies a weighted Poincaré–Wirtinger
inequality, we can apply Theorem 5.1 to see that the (Uniform monotonicity) hypothesis
of Proposition 6.1 is also satisfied. Applying Proposition 6.1, we deduce the desired
convergence rates for Algorithm 1.
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6.3. Numerical results

We conclude the article with a numerical illustration of this algorithm, for the cost
c(x, y) = ‖x − y‖2 and for a piecewise-linear density. The source density is piecewise-
linear over a triangulation of [0, 3] with 18 triangles (displayed in Figure 3). It takes value 1
on the boundary ∂[0, 3]2 and vanishes on the square [1, 2]2. In particular, the support of
this density is not simply connected and not convex. The target measure is uniform over a

Fig. 3. Evolution of Laguerre cells during the execution of the damped Newton algorithm for
semi-discrete optimal transport. Top: The source density ρ is piecewise linear over the domain
X = [0, 3]3 over the displayed triangulation: it takes value 1 on the boundary of the square [0, 3]2

and 0 on the boundary of [1, 2]2. The target measure is uniform over a 302 uniform grid in [0, 1]2.
Bottom: Laguerre cells at steps k = 0, 2, 6, 9, 12, 15, 18, 21 and 25.
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uniform grid 1
n−1 {0, . . . , n− 1}2. Figure 3 displays the iterates of the Newton algorithm,

which in this case takes 25 iterations to solve the optimal transport problem with an error
equal to the numerical precision of the machine. The source code of this algorithm is
publicly available.1

We finally note that recent progress in computational geometry would allow one to
implement Algorithm 1 for the quadratic cost on R3, refining [22] or [12]. It should also be
possible to deal with optimal transport problems arising from geometric optics, such as the
far-field reflector problem [10], whose associated cost satisfies the Ma–Trudinger–Wang
condition [24].

Appendix A. A weighted Poincaré–Wirtinger inequality

In this section, we provide an (almost) explicit example of a probability density on Rd
whose support is an annulus, therefore not simply connected, but which still satisfies a
weighted Poincaré–Wirtinger inequality.

Proposition A.1. Let 0 < r < R and assume that ρ ∈ C0([0, R]) is a probability density
with ρ = 0 on [0, r] and ρ concave on [r, R]. Consider

ρ(x) =
1

‖x‖d−1ωd−1
ρ(‖x‖) over X := B(0, R) ⊆ Rd ,

where ωd−1 is the volume of the unit sphere Sd−1. Then ρ satisfies the weighted Poincaré–
Wirtinger inequality (PW) for some positive constant.

The proof relies on two L1-Poincaré–Wirtinger inequalities. The first inequality is the
usual Poincaré–Wirtinger inequality on the sphere: given a C1 function f on Sd−1, and
Fd−1 := (1/ωd−1)

∫
Sd−1 f (z) dz,∫

Sd−1
|f (z)− Fd−1| dHd−1(z) ≤ cd

∫
Sd−1
‖∇f (z)‖ dHd−1(z) (A.1)

for some positive constant cd . The second inequality is a Poincaré–Wirtinger inequality
on the interval [0, R] weighted by ρ. Given a function f in C1([0, R]), and letting F1 :=∫ R

0 f (r)ρ(r) dr/
∫ R

0 ρ(r) dr , we have∫ R

0
|f (r)− F1|ρ(r) dr ≤ cρ

∫ R

0
|f
′
(r)|ρ(r) dr (A.2)

for some positive constant cρ depending only on ρ, as can be deduced from [3, Theo-
rem 2.1] and from the concavity of ρ on [r, R].

1 https://github.com/mrgt/PyMongeAmpere.

https://github.com/mrgt/PyMongeAmpere
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Proof of Proposition A.1. We now proceed to the proof of the Poincaré–Wirtinger inequal-
ity for (X, ρ). Let f : B(0, R)→ R be a function of class C1. By using polar coordinates
and the definition of ρ, one has

F :=

∫
B(0,R)

f (x)ρ(x) dHd(x)

=

∫ R

0

1
ωd−1rd−1

∫
Sd−1(r)

f (z)ρ(r) dHd−1(z) dr =
∫ R

0
f (r)ρ(r) dr,

where f (r) is the mean value of f over the sphere Sd−1(r),

f (r) =
1

ωd−1rd−1

∫
Sd−1(r)

f (z) dHd−1(z) =
1

ωd−1

∫
Sd−1

f (rz) dHd−1(z).

Using the triangle inequality and the relation between ρ and ρ we get∫
B(0,R)

|f (x)− F |ρ(x) dHd(x) =

∫ R

0

∫
Sd−1(r)

|f (z)− F |ρ(z) dHd−1(z) dr

≤

∫ R

0
ρ(r)|f (r)− F | dr +

∫ R

0

ρ(r)

rd−1ωd−1

∫
Sd−1(r)

|f (z)− f (r)| dHd−1(z) dr.(A.3)

We first deal with the second term on the right-hand side. Using the Poincaré–Wirtinger
inequality (A.1) on the sphere, we have∫

Sd−1(r)
|f (z)− f (r)| dHd−1(z) ≤ cd

∫
Sd−1(r)

‖∇f (z)|z⊥‖ dHd−1(z),

where ∇f (z)|z⊥ is the orthogonal projection of the gradient on the tangent plane {z}⊥, so
that∫ R

0

ρ(r)

rd−1ωd−1

∫
Sd−1(r)

|f (z)− f (r)| dHd−1(z) ≤ cd

∫
B(0,r)

‖∇f (x)|x⊥‖ρ(x) dHd(x).

(A.4)

By the calculation of F above, we see that F is also the mean value of f weighted by ρ.
We can therefore control the first term of the upper bound of (A.3) using the Poincaré–
Wirtinger inequality (A.2) on the interval:∫ R

0
ρ(r)|f (r)− F | dr ≤ cρ

∫ R

0
|f
′
(r)|ρ(r) dr.

Now, notice that

f
′
(r) = lim

h→0

f (r + h)− f (r)

h
= lim
h→0

1
ωd−1

∫
Sd−1

f ((r + h)z)− f (rz)

h
dHd−1(z),
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from which we deduce

|f
′
(r)| ≤

1
ωd−1

∫
Sd−1

∣∣∣∣∂f∂r (rz)
∣∣∣∣ dHd−1(z)

=
1

ωd−1rd−1

∫
Sd−1(r)

∣∣∣∣〈∇f (z) ∣∣∣∣ zr
〉∣∣∣∣ dHd−1(z).

Integrating this inequality shows that∫ R

0
ρ(r)|f (r)− F | dr ≤ cρ

∫ R

0

ρ(r)

ωd−1rd−1

∫
Sd−1(r)

∣∣∣∣〈∇f (z) ∣∣∣∣ zr
〉∣∣∣∣ dHd−1(z)

= cρ

∫
B(0,R)

∣∣∣∣〈∇f (x) ∣∣∣∣ x

‖x‖

〉∣∣∣∣ρ(x) dHd(x). (A.5)

From the simple inequality (a + b)2 ≤ 2(a2
+ b2), we get∣∣∣∣〈∇f (x) ∣∣∣∣ x

‖x‖

〉∣∣∣∣+ ∥∥∇f (x)|x⊥∥∥ ≤ √2 ‖∇f (x)‖.

Using the bounds (A.4) and (A.5) in (A.3), we get the desired inequality:∫
B(0,R)

|f (x)− F |ρ(x) dHd(x) ≤
√

2(cd + cρ)
∫

B(0,R)
‖∇f (x)‖ρ(x) dHd(x). ut

Appendix B. Proof of Theorem 3.1

B.1. Existence of partial derivatives

Without loss of generality, we assume that λ0 = 0. We start the proof of Theorem 3.1 by
showing the existence of partial derivatives of the map Ĝ. In this section, we denote by
e1, . . . , eN the canonical basis of RN . We start by rewriting the finite difference defining
the partial derivative of Ĝ in direction ei using the coarea formula. Fix ‖λ‖ < Ttr. For
t > 0, one has

1
t
(Ĝ(λ+ tei)− Ĝ(λ)) =

1
t

∫
K(λ+tei )\K(λ)

ρ̂(x) dHd(x) =
1
t

∫ λi+t

λi

ĝ(s) ds, (B.1)

where the function ĝ is defined by

ĝ(s) :=

∫
⋂
j 6=i Kj (λj )∩f

−1
i (s)

ρ̂(x)

‖∇fi(x)‖
dHd−1(x). (B.2)

The same reasoning also holds for t < 0. We now claim that ĝ is continuous on some
interval around λi , which by (B.1) and the Fundamental Theorem of Calculus will imply
that the limit as t → 0 of (B.1) exists and is equal to ĝ(λ), thus establishing the formula
(3.3). The continuity of ĝ follows from the next proposition, which is formulated in a
slightly more general way.
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Proposition B.1. Let σ be a continuous non-negative function on X̂ and let ω be the
modulus of continuity of σ . Given any vector λ in RN with ‖λ‖∞ ≤ Ttr, consider the
function

h : R 3 s 7→
∫
L∩Ss

σ(x) dHd−1(x),

where L :=
⋂
j 6=i Kj (λj ) and Ss := f−1

i (s). Then h is uniformly continuous on [−Ttr, Ttr]

and has modulus of continuity

ωh(δ) = C1 · (ω(C2δ)+ |δ|), (B.3)

where the constants only depend on ‖fi‖C1,1 , diam(X̂), εnd, εtr and ‖σ‖∞.

Taking σ = ρ̂/‖∇fi‖ in the previous proposition, which is continuous using the non-
degeneracy condition (ND) and the assumption fi ∈ C1,1(X̂), we see that the function ĝ
defined by (B.2) is continuous. This implies the existence of partial derivatives and estab-
lishes formula (3.3). The proof of Proposition B.1 requires the following lemma.

Lemma B.2. Assume that the functions fi : X̂ → R satisfy (ND). Then, for every
i ∈ {1, . . . , N}, there exists a map 8i : X̂ × R→ Rd such that:

(i) For any (x, t) in X̂ × R such that the curve 8i(x, [0, t]) remains in X̂, one has
fi(8i(x, t)) = fi(x)+ t .

(ii) For all x, y ∈ X̂ and t ∈ R,

‖8i(x, t)−8i(x, s)‖ ≤ |t − s|/εnd, (B.4)
‖8i(x, t)−8i(y, t)‖ ≤ exp(C8|t |)‖x − y‖, (B.5)

where C8 := 3CL/ε2
nd.

Proof. We consider the vector field V 0
i (x) = ∇fi(x)/‖∇fi(x)‖

2 on X̂, which satisfies
‖V 0

i ‖∞ ≤ 1/εnd and whose Lipschitz constant is bounded by C8. This vector field is
extended to Rd using the orthogonal projection on X̂, denoted p

X̂
:

∀x ∈ Rd , Vi(x) := V
0
i (pX̂(x)).

By convexity of X̂, the map p
X̂

is 1-Lipschitz. This implies that the Lipschitz constant of
Vi is also bounded by C8. We let 8i be the flow induced by this vector field, which exists
for all time since Vi is bounded and uniformly Lipschitz on all of Rd . The inequality (B.4)
follows from the definition of integral curves and the bound on ‖Vi‖. Any integral curve
γ : [0, T ] → Rd of Vi which remains in X̂ satisfies

fi(γ (t)) = fi(γ (0))+
∫ t

0
〈γ ′(s) | ∇fi(γ (s))〉 ds

= fi(γ (0))+
∫ t

0
〈Vi(γ (s)) | ∇fi(γ (s))〉 ds = fi(γ (0))+ t,
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thus establishing (i). The inequality (B.5) follows from the bound on the Lipschitz constant
of Vi and from Gronwall’s lemma. ut

Proof of Proposition B.1. Let t, s be small enough so that the transversality condition (T)
holds (that is, t, s ∈ [−Ttr, Ttr]). We assume that t < s in order to fix the signs of some
expressions. We consider the following partition of the facet St ∩ L, whose geometric
meaning is illustrated in Figure 4:

At = {x ∈ St ∩ L | 8i(x, [0, s − t]) ⊆ L},
Bt = {x ∈ St ∩ L | ∃u ∈ [0, s − t), 8i(x, u) ∈ ∂L}.

Similarly, we define

As = {x ∈ Ss ∩ L | 8i(x, [t − s, 0]) ⊆ L},
Bs = {x ∈ Ss ∩ L | ∃u ∈ (t − s, 0], 8i(x, u) ∈ ∂L}.

Recall that by definition,

h(t) =

∫
At

σ(x) dHd−1(x)+

∫
Bt

σ(x) dHd−1(x), (B.6)

where the integral is with respect to the (d − 1)-dimensional Hausdorff measure. Our
strategy to show the continuity of h is to prove that the first terms in the sums defining
h(t) and h(s) in (B.6) are close, namely∣∣∣∣∫

At

σ(x) dHd−1(x)−

∫
As

σ(x) dHd−1(x)

∣∣∣∣ ≤ C3 ·
(
|s − t | + ω(C|s − t |)

)
, (B.7)

St

Ss

x

F (x)

At

As

Bt

Bs

L

∂K1(λ1)

Λ

∂X

∂K2(λ2)

Fig. 4. Illustration of the proof of Proposition B.1.
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and then that the terms involving Bt , Bs are small (recall that both sets depend on t and s):∫
Bt

|σ(x)| dHd−1(x)+

∫
Bs

|σ(x)| dHd−1(x) ≤ C4 · |s − t |. (B.8)

The combination of the estimates (B.7) and (B.8) implies the desired inequality (B.3).
We now turn to the proof of these estimates, and that the constants C3 and C4 in these
estimates depend on ‖fi‖C1,1 , diam(X̂), εnd, εtr and ‖σ‖∞.

Proof of (B.7). By Lemma B.2(i), for any point x in At one has fi(8i(x, s − t)) = s, so
that the map F(x) := 8i(x, s − t) induces a bijection between the sets At and As . As a
consequence of (B.5), the restriction of F to At is a bi-Lipschitz bijection between the sets
At and As , with Lipschitz constant

max{‖F−1
‖Lip(As ), ‖F‖Lip(At )} ≤ exp(C8|s − t |).

Using a Lipschitz change of variable formula, we get∫
At

σ(x) dHd−1(x) =

∫
F−1(As )

σ(x) dHd−1(x)

≤ ‖F−1
‖
d−1
Lip(As )

∫
As

σ(F−1(x)) dHd−1(x)

≤ exp
(
C8(d − 1)|s − t |

) ∫
As

σ(F−1(x)) dHd−1(x). (B.9)

By definition of the modulus of continuity and thanks to (B.4),

|σ(F−1(x))− σ(x)| ≤ ω(‖F−1(x)− x‖)

= ω(‖8(x, s − t)− x‖) ≤ ω(|s − t |/εnd).

Integrating this inequality, we get∫
As

σ(F−1(x)) dHd−1(x) ≤

∫
As

σ(x) dHd−1(x)+Hd−1(As)ω(|s − t |/εnd)

≤

∫
As

σ(x) dHd−1(x)+Hd−1(X̂)ω(|s − t |/εnd), (B.10)

where the second inequality uses the monotonicity of the (d − 1)-dimensional Hausdorff
measure of the boundary of a convex set with respect to inclusion (see [32, p. 211]).
Combining (B.9) and (B.10) we get∫

At

σ(x) dHd−1(x)

≤ exp
(
C8(d − 1)|s − t |

)(∫
As

σ(x) dHd−1(x)+Hd−1(X̂)ω(|s − t |/εnd)

)
,
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so that∫
At

σ(x) dHd−1(x)−

∫
As

σ(x) dHd−1(x)

≤
(
exp(C8(d − 1)|s − t |)− 1

)
‖σ‖∞Hd−1(X̂)

+ exp
(
C8(d − 1)|s − t |

)
Hd−1(X̂)ω(|s − t |/εnd)

≤ C3 ·
(
|s − t | + ω(|s − t |/εnd)

)
,

where the constant C3 depends on CL, εnd, εtr, ‖σ‖∞ and diam(X̂). Exchanging the roles
of s and t completes the proof of (B.7).

Proof of (B.8). By definition, for every point x in the set Bt , the curve 8i(x, [0, s − t])
must cross the boundary of L at some point, so that

u(x) := min{v ∈ [0, s − t] | 8i(x, v) ∈ ∂L}

is well defined. We write P(x) := 8i(x, u(x)) for the corresponding point on the bound-
ary of L. By definition of u(x), the curve 8(x, [0, u(x)]) is included in L, so that by
Lemma B.2(i) we have fi(P (x)) = t + u(x). This shows

P(Bt ) ⊆ 3 := ∂L ∩ f
−1
i ([t, s]). (B.11)

We now prove that the map P satisfies a reverse-Lipschitz inequality. Note that for any
point x in Bt ,

x = 8i(P (x),−u(x)) = 8i(P (x), t − fi(P (x))).

Using the bounds (B.5) and (B.4), we find that for any x, y in Bt ,

‖x − y‖ ≤ ‖8i(P (x), t − fi(P (x)))−8i(P (y), t − fi(P (y)))‖

≤ ‖8i(P (x), t − fi(P (x)))−8i(P (y), t − fi(P (x)))‖

+ ‖8i(P (y), t − fi(P (x)))−8i(P (y), t − fi(P (y)))‖

≤ exp(C8Ttr)‖P(x)− P(y)‖ + |fi(P (x))− fi(P (y))|/εnd

≤ C′‖P(x)− P(y)‖,

where C′ := exp(C8)+ CL/εnd; we have used the fact that Ttr ≤ 1. We can now bound
the (d − 1)-Hausdorff measure of Bt in terms of that of 3 using this Lipschitz bound and
the inclusion (B.11):

Hd−1(Bt ) ≤ Hd−1(P−1(P (Bt ))) ≤ C
′d−1Hd−1(3). (B.12)

What remains to be done is to prove that the (d − 1)-Hausdorff measure of 3 behaves like
O(|s − t |), and this is where the transversality condition will enter.

Let us write

Fj :=

{
f−1
j (λj ), j 6= 0, i,
∂X̂ ∩ ∂L, j = 0.
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Then ∂L can be partitioned (up to an Hd−1-negligible set) into faces ∂L =
⋃
j 6=i(Fj ∩ L)

and using the coarea formula on each of the facets we get (writing B := f−1
i ([t, s]))

Hd−1(3) =
∑
j 6=i

Hd−1(B ∩ (Fj ∩ L)) =
∑
j 6=i

∫
B∩(Fj∩L)

dHd−1(x)

=

∑
j 6=i

∫ s

t

∫
Su∩(Fj∩L)

1
Jij (x)

dHd−2(x) du, (B.13)

where Jij (x) is the Jacobian of the restriction of fi to the hypersurface Fj . More precisely,

Jij (x) =

∥∥∥∥∇fi(x)− 〈∇fi(x) ∣∣∣∣ ∇fj (x)〉 ∇fj (x)
‖∇fj (x)‖2

∥∥∥∥ if j 6= 0, i,

and

Ji0(x) = ‖∇fi(x)− 〈∇fi(x) | v0(x)〉v0(x)‖,

where v0(x) ∈ NxX̂ is a unit vector. Since X̂ is convex, for Hd−1-a.e. x ∈ ∂X̂ the normal
cone NxX̂ consists of only one direction, thus for such x there is a unique choice of v0(x).
Let us write vi = ∇fi(x)/‖∇fi(x)‖ and vj for either ∇fj (x)/‖∇fj (x)‖ or v0(x); we
then have, using (T),

Jij (x)
2
= ‖∇fi(x)‖

2
‖vi − 〈vi | vj 〉vj‖

2

≥ ‖∇fi(x)‖
2(1− 〈vi | vj 〉2) ≥ ε2

ndε
2
tr. (B.14)

Combining (B.13) and (B.14) gives

Hd−1(3) ≤
1

εndεtr

∑
j 6=i

∫ s

t

Hd−2(Su ∩ (Fj ∩ L)) du

=
1

εndεtr

∫ s

t

Hd−2(Su ∩ ∂L) du. (B.15)

By definition, a point belongs to the intersection Su ∩ ∂L if it lies in the singularity set
6(λ(u)), where λ(u) = (λ1, . . . , λi−1, u, λi+1, . . . , λN ). By Lemma 3.2,

Hd−2(Su ∩ ∂L) ≤ Hd−2(6(λ(u))) ≤ C(d, diam(X̂))
1
εtr
. (B.16)

Combining (B.12), (B.15) and (B.16) we obtain Hd(Bt ) ≤ C|t − s|, which implies (B.8)
by the boundedness of σ . ut

B.2. Continuity of partial derivatives

We prove that the function Ĝ defined in (3.1) is continuously differentiable by controlling
the modulus of continuity of its partial derivatives given in (3.3). Again, we start with a
slightly more general proposition.
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Proposition B.3. Let σ be a continuous function on X̂ with modulus of continuity ω and
i ∈ {1, . . . , N}. Consider the following function on the cube Q := [−Ttr, Ttr]

N :

H(λ) :=

∫
K(λ)∩f−1

i (λi )

σ(x) dHd−1(x).

Then H is uniformly continuous on Q with modulus of continuity

ωH (δ) = C1 · (ω(C2δ)+ |δ|),

where the constants only depend on ‖fi‖C1,1(X̂), diam(X̂), εnd, εtr, and ‖σ‖∞.

Proof. Proposition B.1 implies that the functionH is uniformly continuous with respect to
changes of the ith variable. Let us now consider variations with respect to the j th variable
with j 6= i by introducing

h : [−Ttr, Ttr] 3 s 7→

∫
K(λ1,...,λj−1,s,λj+1,...,λN )∩f

−1
i (λi )

σ(x) dHd−1(x)

for some fixed λ ∈ [−Ttr, Ttr]
N . We can rewrite the difference between two values of

h using the coarea formula. As before, we assume s > t to fix the signs and introduce
L′ := X̂ ∩

⋂
k 6∈{i,j}Kk(λk) and S := f−1

i (λi). We have

h(s)− h(t) =

∫
L′∩Kj (s)∩S

σ(x) dHd−1(x)−

∫
L′∩Kj (t)∩S

σ(x) dHd−1(x)

=

∫ s

t

∫
L′∩S∩f−1

j (u)

σ(x)

Jij (x)
dHd−2(x) du,

where the Jacobian factor Jij is no less than εndεtr from (B.14). Therefore,

h(s) ≤ h(t)+
‖σ‖∞

εndεtr

∫ s

t

Hd−2(L ∩ S ∩ f−1(u)) du. (B.17)

Just as in the proof of Proposition B.1, the set L ∩ S ∩ f−1(u) is included in the set
6(λ1, . . . , λj−1, u, λj , . . . , λN ). Thus, by Lemma 3.2,

Hd−2(L ∩ S ∩ f−1(u)) ≤
C(d, X̂)

εtr
. (B.18)

Combining (B.17) and (B.18) we can see that the function h is Lipschitz with constant

Ch := C(d, X̂)
‖σ‖∞

εndε
2
tr
.
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Finally,

|H(µ)−H(λ)| ≤

N∑
j=1

|H(λ1, . . . , λk−1, µj , . . . , µN )−H(λ1, . . . , λj , µj+1, . . . , µN )|

≤ ωh(|µi − λi |)+
∑
j 6=i

Ch|µj − λj |

≤ ωh(‖µ− λ‖∞)+ (N − 1)Ch‖µ− λ‖∞,

where ωh is the modulus of continuity defined in Proposition B.1. This establishes the
uniform continuity of the function H , with the desired modulus of continuity. ut

B.3. Proof of Theorem 3.1

Proposition B.1 shows that the partial derivative Ĝ with respect to the variable λi exists
and is given by (B.2). Applying Proposition B.3 with σ(x) = ρ̂(x)/‖∇fi(x)‖, we obtain
C0,α regularity for each of the partial derivatives of Ĝ on the cube Q := [−Ttr, Ttr]

N from
the C0,α regularity of ρ̂. Moreover, the C0,α constant of each partial derivative over Q is
controlled by

C(diam(X̂), εnd, εtr, ‖∇fi‖C1,1(X), ‖ρ̂‖C0,α(X)).
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