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The harmonic approximation to transition state theory simplifies the problem of calculating a chem-
ical reaction rate to identifying relevant low energy saddle points in a chemical system. Here, we
present a saddle point finding method which does not require knowledge of specific product states.
In the method, the potential energy landscape is transformed into the square of the gradient, which
converts all critical points of the original potential energy surface into global minima. A biasing term
is added to the gradient squared landscape to stabilize the low energy saddle points near a mini-
mum of interest, and destabilize other critical points. We demonstrate that this method is competitive
with the dimer min-mode following method in terms of the number of force evaluations required
to find a set of low-energy saddle points around a reactant minimum. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4875477]

I. INTRODUCTION

One of the major challenges in computational chemistry
and condensed matter physics is the efficient calculation of
the rate of chemical reactions and diffusion events which have
barriers much higher than the thermal energy. Molecular dy-
namics (MD) is an important technique that can be used to
calculate rates of reactions, but it is generally limited to sim-
ulation time scales of nanoseconds. Alternative methodology
is needed to capture the long time scale dynamical evolution.

A powerful framework for calculating rates of chemical
systems is transition state theory (TST). Within TST, the rate
is estimated by the equilibrium flux through a hyper-surface
separating a reactant from product states. The TST rate can be
expressed as

kTST = 1

2
〈|v|δ(x − x‡)〉R, (1)

where x = x‡ is the TST dividing surface, v is the velocity
through the dividing surface, and 〈. . . 〉R is the canonical aver-
age over the reactant state.1, 2 Determining the TST dividing
surface can be the most difficult aspect of calculating a TST
rate in high dimensional systems. Harmonic transition state
theory (HTST) is a widely used simplification in which the
dividing surface is approximated as a set of hyperplanes pass-
ing through each saddle point (SP) connecting the minimum
to product states along minimum energy paths.3, 4 The normal
to these hyperplanes are along the negative curvature modes
of the potential at each SP. Expanding the potential up to sec-
ond order around the minimum and saddles allows for an an-
alytic evaluation of Eq. (1) to give the HTST rate expression,

kHTST =
∏3N

i=1 ν init
i

∏3N−1
i=1 ν

‡
i

e−(E‡−Einit)/kbT , (2)

where ν init and ν‡ are the normal mode frequencies and Einit

and E‡ are the potential energies at the minimum and SP,

respectively.4 With such a simple rate expression, the hard-
est part of evaluating HTST rates is the determination of the
SPs connecting the minimum to products via minimum en-
ergy pathways.

There are two classes of SP finding methods. The first
class requires the product states as input for finding mini-
mum energy paths and SPs on these paths. Such methods
include the nudged-elastic band method,5–7 and the closely
related string method.8 The second class uses only infor-
mation about the location of the starting minimum. Popular
methods include the min-mode following methods, the dimer
method,9–11 Rayleigh-Ritz minimization12 as in the hybrid
eigenvector following method,13 or the Lanczos algorithm as
in the activation relaxation technique (ART-nouveau),14 to de-
termine the lowest mode of the Hessian. A review of sad-
dle point finding methods of both classes can be found in
Refs. 15–17.

Methods that walk from a reactant minimum to a SP are
important since these methods do not require advance knowl-
edge of product states. An ideal SP finding method for esti-
mating rates with HTST would only use information from the
minimum and efficiently find a set of low-lying saddle points
in the neighborhood of the reactant state. Partially motivated
by the functionalized energies,18, 19 we introduce a SP find-
ing method, the biased gradient squared descent (BGSD), that
does not require calculating a minimal eigenvector and can be
parametrically tuned to find low energy SPs.

II. METHODS

A. Biased gradient squared descent

Given a potential energy surface, V (r), the goal of the
BGSD method is to produce a family of associated energy
landscapes, H(r; α, β) whose critical points include the crit-
ical points (CPs) of V , but with the property that selec-
tive tuning of the parameters α and β allow a systematic

0021-9606/2014/140(19)/194102/7/$30.00 © 2014 AIP Publishing LLC140, 194102-1
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transformation of the SPs of V into local minima of H. Such
an algorithm would simplify the search for SPs of V into a
search for local minima of H, a task ideally suited to gradient
flow. We desire a construction of H which is readily general-
izable, easy to implement and computationally efficient, and
which produces as few extraneous local minima (local min-
ima of H which are not also CPs of V ) as possible. Moreover
it is desirable to be able to selectively search for the saddle
points of V , starting from those with an energy of a local min-
imum and moving upwards.

The starting point for the construction of the BGSD po-
tential, H, is the squared gradient of V , |∇V |2. Every CP of
V is a degenerate global minimum of |∇V |2 and all CPs of
|∇V |2 will either be CPs or inflection points (IPs) of V . It is
natural to ask if this degeneracy can be systematically broken,
mapping CPs of V with desired properties to local minima of
H while the remainder of the V -CPs become H-SPs. One ap-
proach is to bias |∇V |2 towards a level-set of V

H (r; α, β) := 1

2
|∇V (r)|2 + 1

2
α(V (r) − β)2, (3)

where β is the chosen level-set and α determines the bias
strength. The CPs of H are the solutions of

∇H (r) = [∇2V (r) + α(V (r) − β)]∇V (r) = 0, (4)

which fall into two classes, the CPs of V , that are solutions
of ∇V (r) = 0, and the “eigen-critical points” (EPs) rEP for
which ∇V (rEP) is a non-zero eigenmode of the Hessian ma-
trix ∇2V (rEP) associated to eigenvalue λ = −α(V (rEP) − β).
Figure 1 illustrates a mapping from V to H for a one-
dimensional potential, and highlights how CPs and IPs of V

are mapped onto |∇V |2 as extrema. The harmonic bias term in
H stabilizes the extrema of |∇V |2 whose energies are close to
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FIG. 1. Illustration of the BGSD method, depicting the transformation of
the V - into the H-landscape. The plot shows the CPs of V on the different
landscapes include the two local minima, MP1–2, the local maximum (rep-
resenting a SP in a higher dimensional space), SP1, and the inflection points,
IP1–4. This example shows how inflection points become local extrema in
|∇V |2. One eigen-critical point, EP1, is created in H due to the destabiliza-
tion of MP2.
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FIG. 2. Spectral mapping of the eigenvalues of the V - to the H-Hessian under
the following conditions: (a) at the minimum, where one eigenvalue of the V -
Hessian becomes negative in the H-Hessian; (b) at SPs with values of β that
are greater than; (c) equal to; and (d) and less than V (rSP), but inside the
H-stability window. Case (b) highlights the location of ∇2V eigenvalues, λ−
and λ+, which define the H-stability window.

β. The BGSD method is similar to the gradient norm method
for finding transition states20 with the addition of a bias poten-
tial, commonly used in umbrella sampling methods,21 which
stabilizes critical points around a particular energy.

B. Selection of H

In a SP search about a local minimum (MP), rMP of V ,
it is desirable to have rMP map to a SP of H, and hence be
unstable under an H-gradient flow, while the V -SPs should
map to local minima of H. The stability of V -CPs, rCP, under
the H-flow, is determined by the H-Hessian, which takes a
simple form at V -CPs,

∇2H (rCP) = [∇2V (rCP) + α(V (rCP) − β)]∇2V (rCP). (5)

In particular, for fixed values of the scalar α(V (rCP) − β), Eq.
(5) is a quadratic-matrix map on ∇2V , so that each eigenvalue
λV of ∇2V (rCP) is mapped onto an associated eigenvalue λH

of ∇2H via the relation

λH = λ2
V + α(V (rCP) − β)λV =: g(λV ; V (rCP)). (6)

As depicted in Fig. 2, this relation is the basis for the spec-
tral mapping of CPs of V onto saddles or local minima of
H. The sign of (V (rCP) − β) plays an essential role in deter-
mining the stability of V -CPs under the H-gradient flow. For
any CP, rCP of V , the associated parabola g always passes
through the origin. However, if V (rCP) − β < 0 then g is neg-
ative on an interval to the right of the origin. In particular
at rMP, the spectrum of ∇2V (rMP) is positive and choosing
α sufficiently large, the V -MP maps to an H-SP. However,
if rCP is a first order SP of V , then ∇2V (rSP) has a single
negative eigenvalue, and sweeping the value of β from below
V (rSP) to above, the negative region of the parabola g, ini-
tially on the positive real axis, shrinks as β approaches V (rSP),
compresses to a point when β = V (rSP) and then switches to
the negative real axis for β > V (rSP), and finally grows to
encompass the negative eigenvalue of ∇2V (rSP). The key to
tuning H is that rCP will be an H-SP when |V (rCP) − β| is

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

202.113.236.7 On: Tue, 27 May 2014 08:39:25



194102-3 Duncan et al. J. Chem. Phys. 140, 194102 (2014)

sufficiently large, and an H-MP when |V (rCP) − β| is suf-
ficiently small, so long as the Hessian ∇2V (rCP) has no
zero eigenvalues. Indeed, rCP is an H-MP for beta satisfy-
ing −λ− < α(V (rCP) − β) < −λ+, where λ− is the negative
eigenvalue of ∇2V (rCP) with the smallest absolute magnitude
and λ+ is the positive eigenvalue with the smallest absolute
magnitude. We call these values of β the H-stability window.

The optimal choice for α depends upon the stiffness of
the V energy landscape. If ∇2V has many small eigenvalues,
then α should be correspondingly small so that reasonable
increments in β will not jump over the H-stability window.
However if the smallest eigenvalues of ∇2V are large, then
α should be chosen appropriately large so that the H-stability
intervals of differing V -CPs do not overlap excessively.

C. Stability and bifurcation of eigen-critical points

The H-stability of the EPs does not admit a general anal-
ysis, however one can understand their stability by the local
bifurcations that create them. Indeed, for α = 0 there are no
EPs of H, and as α is increased from zero the EPs will typi-
cally be created in bifurcations from V -CPs (see Fig. 3). Re-
turning to the example of the first order V -CP, rCP, depicted in
Fig. 2, for a fixed value of α > 0, as β is varied, an eigenvalue
λH(rCP; α, β) of ∇2H(rCP) will pass from positive to negative
as β leaves the H-stability interval for rCP. The value of β for
which λH(rCP; α, β) = 0 corresponds to the creation of a EP,
rEP of H. In particular rEP will exist when λH(rCP, α, β) < 0
and will move away from rCP as λH(rCP; α, β) decreases from
zero. For β sufficiently close to the critical value at which rEP

is created, then rEP will be a local minimum of H, but it may
become unstable to secondary bifurcations as β is further in-
creased. If an EP is sufficiently close to rCP, then a gradient
flow may converge to rEP, however we can subsequently ad-
just α smaller, perhaps to zero, which will eliminate the EP
and re-stabilize rCP, so that further evolution of the H-gradient
flow for the α = 0 may converge to rCP. It is important to note
that minimization of the H (r; 0, β) = |∇V |2 landscape does
not guarantee convergence to a CP of V , since IPs of V can
be local minima (see Fig. 1).

D. Implementation of H gradient flow

The SP search is achieved by descending to minima of H
through an H gradient flow,

dr

dt
= −∇H (r), (7)

where ∇H is given in Eq. (4). An efficient implementation of
this flow must avoid a full calculation of the Hessian of V ,
which is generically excessively large. However we require
only the quantity ∇2V (r)∇V (r), which admits an efficient
matrix-free evaluation through the difference quotient

∇2V (r)∇V (r) = lim
δ→0

∇V [r + δ∇V (r)] − ∇V (r)

δ
. (8)

For an appropriately small choice of δ, this different quotient
yields an accurate approximation of ∇2V (r)∇V (r) at the cost
of two force evaluations.

(a) (b)

(c) (d)

FIG. 3. Illustration of the bifurcations of EPs in BGSD. (a) V (r) with the CPs
highlighted and the three values of β used in (b), (c), and (d). Two values of
α are shown above, a fixed α1 > 0 and α2 = 0 which eliminates the EPs in H.
(b) In the H(r; αn, β1) landscape, where λ(rCP; α1, β1) < 0, two pairs of EPs
are formed, {EP1, EP4}, and {EP2, EP3}, the H-gradient flow will converge
to an EP, and subsequent evolution to α = α2 will yield the return to the
V -MP. (c) In the H(r; αn, β2, ) landscape, we still have λ(rCP; α1, β2) < 0,
however, H-gradient flow which converges to EP2 and EP3 will subsequently
converge to SP1 with α = α2. (d) In the H(r; α, β3) landscape, λ(rCP; α, β3)
> 0, so SP1 is stabilized and absorbs EP2 and EP3. Notice that EP1 and EP4
are formed along directions in the potential which do not lead to SPs.

As discussed previously, adjusting α to smaller values
will eliminate EPs of H while minimization of |∇V |2 elim-
inates all EPs of H. The parameter α is adjusted by first using
a fixed α > 0. After convergence of H(r; α, β), the resulting r
is used as the initial data point in an optimization of the H(r;
0, β) landscape. The value of H(r; 0, β) can be used as a sim-
ple check for convergence to IPs. All CPs of V are zero on the
|∇V |2 landscape, so convergence to a positive value of |∇V |2
indicates that an IP has been found.

III. RESULTS

A. LEPS potential in two dimensions

As a simple two dimensional test of the BGSD method,
a London-Eyring-Polanyi-Sato (LEPS) potential coupled to a
harmonic oscillator (described elsewhere22) was chosen to il-
lustrate the issues that arise in BGSD SP searches. Two Gaus-
sian functions were added to this potential to increase the
number of SPs.23 The potential is shown in Fig. 4(a); it has
four local minima, MP1–4, four first order SPs, SP1–4, and
one maximum, SSP1. The maximum has two negative modes
and is thus labelled as a second order saddle point (SSP), to
make a connection with the higher dimensional systems de-
scribed subsequently. MP1 is taken as the reactant state mini-
mum. SP1, SP3, and SP4 are connected to MP1 by a steepest
descent path; SP2 is not.

In the gradient squared landscape, shown in Fig. 4(b), all
CPs of V are global minima with a value of zero. One im-
portant feature of this landscape is the low curvature direction
near MP1, which does not lead to a CP of V . The biasing term,
1
2α(V (r) − β)2, with α = 5 is added to the gradient squared
landscape to obtain H(r; α, β1), as shown in Fig. 4(c). A value
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(a) (b)

(c) (d)

FIG. 4. (a) Contour of the modified LEPS potential, V (r), with the CPs la-
belled. (b) Contour plot of |∇V (r)|2. The black arrow is parallel to a soft
mode which does not lead to a CP of V (r). (c) Contour plot of H with a value
of β1 = 2.5, less than SP1, and (d) β2 = 5.0, less than SP4. The grey lines
indicate the isosurface where V (r) = β.

of β1 = 2.5 was chosen to be slightly less than the lowest
energy saddle, SP1. To follow gradient descent trajectories
of H, initial points were drawn from a Monte Carlo (MC)
sampling of the contour V (r) = β, shown as grey lines in
Fig. 4(c). The MC sampling was initiated from MP1 and
hence only sampled points from the branch of the V (r) = β

around MP1.
Three points were found by minimizing H(r; α, β1) from

initial points on β1: EP1, EP2, and SP1. There are other min-
ima on the H landscape, but the initial points, drawn from
the branch of the β1 contour around MP1, do not lie in their
basin of attraction. The three minima of H are from differ-
ent classes. SP1 is a saddle of V , and a target of the search.
EP1 is along the path to the higher energy saddle, SP3. EP2
is along the soft mode for which there is no CP of V . Sub-
sequent minimization of H (r; 0, β1) = |∇V |2 takes points at
both EP1 and EP2 back to the minimum, MP1. At the higher
value of β2, shown in Fig. 4(d), minimization of H(r; α, β2)
finds the higher energy saddles SP3 and SP4.

A more systematic search of saddles around the reactant
is achieved by scanning over values of β, increasing from the
energy of the minimum. In Fig. 5, 24 values of β were cho-
sen between the energy of the minimum MP1 and the maxi-
mum SSP1. A total of 500 searches were used to determine
the fraction of CPs found at each value of β. For β > 1.0 the
H-stability window for SP1 opens and there is a sharp increase
in the number of times this CP is found. Above the energy of
SP1, the β contour extends beyond the reactant state basin so
that for β > 3.0, SP2, which is not connected with MP1, is
frequently found. SP3 reaches its H-stability window at this
energy as well and is found over a wide range of β. SP4 is
stable for β > 4.5 and is found frequently due to a large basin
of attraction as compared to SP3. MP1 is found for all values
of β due to the minimum in H(r; α, β) along the soft mode
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FIG. 5. CPs of the LEPS potential found as a function of β. The vertical
dashed lines indicate the energy of the CP of the corresponding color. The
marked values of β correspond to Figs. 4(c) and 4(d).

(e.g., EP2), which relaxes back to MP1 upon minimization of
H(r; 0, β). At the highest values of β, it is possible to find the
maximum, SSP1, but it is sandwiched between SP3 and SP4
and has a small basin of attraction.

These results demonstrate that the BGSD method can
find all SPs for our two-dimensional system. The frequency
and the values of β that CPs are found depend on the size
and location of the basin of attraction. Two weaknesses of
the method are identified. The first is that when β exceeds
the energy of the lowest saddle, the BGSD can find sad-
dles that are not connected to the initial state minimum. Sec-
ond, soft modes introduce EPs in H which relax back to the
minimum under |∇V (r)|2. This later issue is worrisome for
higher dimensional systems which typically have many soft
modes.

B. Al adatom on an Al(100) surface

A more challenging problem is the search for diffusion
mechanisms of an Al adatom on the surface of Al(100).
The Al interatomic potential was taken to be of the embed-
ded atom method form from Voter and Chen.24 The surface
was modeled as six layers containing 64 atoms with a sin-
gle adatom on the surface. The bottom two layers were held
frozen in bulk positions, leaving 771 degrees of freedom.
The six saddle points within 0.5 eV of the reactant mini-
mum (excluding those equivalent by symmetry) are shown in
Fig. 6. The two lowest energy diffusion mechanisms are the
exchange (SP1) and hop (SP2). SP3 involves four surface
atoms. SP4 and SP5 are longer range exchange processes in-
volving three and two surface atoms, respectively. Addition-
ally, there is a second order saddle, SSP1, which was reported
by Maronsson et al.25

A concern with the implementation of the BGSD method
is that EPs created by soft modes will dominate the minima on
the H landscape as the dimensionality of the system increases.
A dimensionality scaling test was performed by changing the
number of atoms fixed to their equilibrium positions. The low-
est dimensional case had the bottom five atomic layers fixed,
leaving 195 free degrees of freedom. The highest dimensional
system allowed all atoms to move, corresponding to 1155
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FIG. 6. Five diffusion mechanisms with barriers less than 0.5 eV for
the adatom on an Al(100) surface, as well as one second order saddle
point.

degrees of freedom. To test for the number of EP found in-
volving soft modes, 200 minimizations of H were performed
on each system. A fixed value of α = 10 was used, and β

was set to the lowest SP energy for each system, which varied
somewhat with the number of frozen atoms. From each initial
point on the β contour, H(r; α, β) was first minimized fol-
lowed by H (r; 0, β) = |∇V (r)|2. The CPs found were either
the reactant minimum, or a SP connected to the reactant state.
As the dimensionality was increased, the fraction of SPs de-
creased and the number of EPs along soft modes increased, as
shown in Fig. 7 (blue line).

To help solve this problem, local displacements were
made from the minimum to the β contour. Specifically, only
the adatom and all atoms within 3.3 Å were displaced. The
number of SPs found was significantly improved using this lo-
cal displacement scheme, as shown in Fig. 7 (red line), as well
as the scaling with dimensionality. The local biasing scheme
was used in all other results for the Al system.

The fraction of different saddles found was calculated
over a set of β values, as shown in Fig. 8. At low values of
β, only the minimum (MP1) is found and then as β increases,
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FIG. 7. The BGSD method scales poorly with dimensionality when searches
are initiated by displacing all degrees of freedom from a minimum in the Al
adatom system; local displacements improve the scaling by avoiding conver-
gence to spurious EPs found along soft modes.

FIG. 8. Distribution of CPs found in the Al adatom system as a function of
the bias energy, β. The low energy CPs are shown in Fig. 6. SPx indicates
any higher energy saddles found, and NC are any CPs that are not connected
to the reactant, MP1.

this fraction drops to zero. Convergence to different saddle
points, with increasing β, occurs roughly in the order of their
energies. There are some exceptions, but Fig. 8 clearly illus-
trates the turning on and off as β passes through the respec-
tive H-stability windows of the different saddles points. At
high values of β, saddles with energies larger than 0.5 eV are
found (SPx), as well as the second order saddle (including
SSP1), SPs that are not connected (NC) to MP1, and very few
IPs.

To test the efficiency of the BGSD method and compare
with established methods, the number of force calls required
to find processes with barriers less than 0.5 eV in the Al
adatom system was determined. For this comparison, we use a
scheme for sampling β values between the reactant minimum
and a specified maximum, βmax, with a weight proportional
to the probability of finding a new CP or IP. The energy range
was split into Nbins bins, where each bin i has a probability
distribution of being selected, pi, which is adjusted over the
course of the simulation. The probabilities pi are set initially
to 1

Nbins
. For each new saddle search a bin i is selected from the

probability distribution and a random value of β is selected
from within bin i. The CP or IP found in the search is then
determined to be redundant or new, as compared to a history
of previous results. The probability of starting a new search in
the bin is then adjusted according to

pi ← pi(1 ± λ), (9)

where the probability is scaled by 1 + λ if the result is new
and 1 − λ if redundant. The pi are then normalized. When all
CPs and IPs are found in the β range of interest, the probabil-
ity distribution becomes flat. For the Al system, βmax was set
to 0.5 eV above the energy of the reactant state, Nbins to 10,
and λ to 0.1.

The performance of the BGSD method is shown in
Fig. 9 (blue line). This plot shows the error in the total rate
of escape from the initial state as a function of the average
number of force calls for both the BGSD method, averaged
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FIG. 9. Comparison of BGSD method versus the dimer method for finding
the set of SPs less than 0.5 eV for the Al adatom system.

over ten different runs. The error in the rate is given by

kError = 1 −
∑nSP

i=1 kHTST
i

∑NSP
i=1 kHTST

i

, (10)

where NSP is the number of SPs under 0.5 eV and nSP is the
number of SPs currently found by the method.

The efficiency of BGSD was compared to the dimer min-
mode following method. Similar local displacements were
used to initialize the dimer searches, in which the adatom
and all atoms within 3.3 Å were randomly displaced ac-
cording to a Gaussian distribution with a standard deviation
of 0.2 Å. Both the dimer method and the BGSD method
used the limited memory Broyden-Fletcher-Goldfarb-Shanno
(LBFGS) algorithm for convergence to stationary points.26

The convergence criterion for the dimer method was |F|
< 0.001 eV/Å, where F is the force vector. A corresponding
final convergence criterion was used for the BGSD method.
For H(r; α, β) where α > 0 convergence was set at |∇H(r;
α, β)| < 10−2 eV2/Å3. Minimization of H(r; 0, β) was termi-
nated when |H(r; 0, β)| < (10−3 eV/Å)2, which is equivalent
to the convergence criterion of the dimer method. The BGSD
method can also converge to IPs, for which the optimization
was terminated when |∇H(r; 0, β)| < 10−4 eV2/Å3 and H(r;
0, β) > (10−3 eV/Å)2. The comparison in Fig. 9 shows that
the BGSD method finds the set of SPs on average with some-
what fewer force calls than the dimer method.

C. Platinum heptamer island

To further test the performance of the BGSD method, a
second high-dimensional system was investigated, involving
diffusion and rearrangement of a seven-atom Pt-island on a
Pt(111) surface. A pairwise Morse potential was used with the
same parameters described in Ref. 15. The Pt surface consists
of 343 atoms with six layers of 56 atoms, with the seven island
atoms on the surface. The bottom three layers of the system
were fixed at bulk positions, leaving 175 atoms free to move.
The seven lowest energy SPs are shown in Fig. 10. In the two
lowest, SP1 and SP2, the entire island shifts to a neighboring
site. The next three, SP3–5, involve a two atom slide within
the island, and the highest, SP6 and SP7, involve concerted
rearrangements of all atoms in the island.

Reactant ReactantProduct Product

SP1, ΔV = 0.601 eV

SP2, ΔV = 0.620 eV

SP3, ΔV = 0.985 eV

SP4, ΔV = 0.987 eV

SP5, ΔV = 0.988 eV

SP6, ΔV = 1.196 eV

SP7, ΔV = 1.207 eV

IP1, ΔV = 1.250 eV

FIG. 10. The seven lowest SPs found from the Pt heptamer island minimum,
and the lowest energy IP found.

Figure 11 shows the CP found as a function of β. The
BGSD method does a good job finding the low energy SP1–
5 as β is increased to 1 eV. Above 1 eV, a large fraction of
IPs are found, which is quite different from the Al system.
One such IP is shown in Fig. 10. The spurious IPs increase
the cost of finding higher energy SPs between 1.0 and 1.5 eV.
Additionally, the Pt system is somewhat stiffer than the Al
system and required on average twice as many force calls to
optimize H and |∇V |2.

To compare the efficiency with the dimer method, β val-
ues between 0 and 1.5 eV above the minimum were sampled
using Nbins = 15 and λ = 0.1. Local displacements were made

FIG. 11. Fraction of CPs found as a function of β for Pt heptamer diffusion
on Pt(111).
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FIG. 12. Comparison of BGSD method versus the dimer method for finding
the set of saddle points less than 1.5 eV for the Pt heptamer island system
with regards to number of force calls.

within the subspace of a randomly selected atom in the is-
land and all neighbors within 3.3 Å. For the dimer method,
Gaussian displacements were made with a standard devia-
tion of 0.1 Å. The same convergence criteria were used as
with the Al system. Figure 12 shows that the dimer method is
able to find SPs more quickly than BGSD, due to the spu-
rious IPs and slower convergence of each saddle in the Pt
system.

IV. CONCLUSIONS

We have introduced a new BGSD method for finding SPs
within an energy range of a specified local minimum. This
method converts the original potential energy surface, V (r),
into a family of objective functions, H(r; α, β), which stabi-
lize SPs. As demonstrated by the Al adatom and Pt heptamer
island systems, BGSD is competitive in terms of efficiency
with the dimer method for finding the set of low energy SPs.
Unlike min-mode following methods, the BGSD method finds
not only first order SPs but any CPs on the potential energy
landscape. Additionally the method can converge to IPs as
well as CPs which reduces the efficiency of SP finding. Dif-
ferences with existing methods, and particularly the ability to
target specific energy values, make BGSD a useful addition to
the toolkit of SP finding methods.
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