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1. Introduction. A contact form on an odd-dimensional manifold M of
dimension 2n + 1 is a 1-form 2 such that the (2n + 1)-form fl, given by

^ ",

defines a volume form on M. We observe that any manifold admitting a contact
form is necessarily orientable and that a contact form defines a natural
orientation.
Assume now that (M, 2) is a manifold together with a given contact form.

First of all, we note that 2 defines a 2n-dimensional vector bundle over M.
Indeed, consider M, where is given by

m ker(2m).

The linear functional /m TmM R is nonzero since 2 ^ (d2)" defines a volume
form. Hence we obtain a vector bundle. Moreover, by the properties of 2, we see
that co := d2l( @ ) is nondegenerate on each fibre. Clearly, co m m R is
also skew-symmetric and bilinear; hence it is a symplectic form on m. Therefore,
(, co) is a symplectic vector bundle.

Since the dimension of M is odd, d2 is degenerate on each fibre TmM of the
tangent bundle TM. But it is as good as it can be, since 2 is a contact form.
Therefore, we obtain a line bundle g over M via the definition

em {p TmMld2m(p, q) 0 for all q m-
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242 c. ABBAS

We observe that this line bundle has a natural section X defined by the set of
equations

ix d2 O, ix2 1.

Summing up, a contact form it on an odd-dimensional manifold M of dimension
2n + 1 defines a natural splitting of the tangent bundle TM of M into a line
bundle g M with a preferred section X and a symplectic vector bundle (, 09)"

TM (g, Xz) (,o9).

In the following, we always denote the data associated to a pair (M,2) by
,og, g, and Xx. The vector bundle M without its symplectic structure is
called a contact structure on M. The vector field Xx is called the Reeb vector

field associated to 2. We observe that, given the contact structure , we can
rediscover the conformal class of the symplectic structure. Namely, take any
nowhere-vanishing 1-form z with ker(z) . Then

for some nonvanishing smooth function f" M --+ R. We observe that

o9 d[( @ ) =f. dv]( ).

If M is a (2n+ 1)-dimensional contact manifold with contact form 2, then the
sytnplectisation of M is the manifold R M with symplectic structure o9 :=
d(et2). One verifies easily that o9 is indeed a symplectic structure (recall that
d,lker;tker;t is nondegenerate). Assume now that J is a compatible complex struc-
ture on the bundle ker 2, that is:

J(p)’ker2(p) ker2(p) is a linear map satisfying j(p)2 __-Id for each
pM;
J depends smoothly on p;
J satisfies the compatibility condition that d2 o (Id J) is a bundle metric
on ker 2.

(Such J exist; see [10].) We obtain in a natural way the following almost complex
structure on the syrnplectisation R M:

J(a, u)(h, k) := (-2(u)k, J(u)rc,k + h. X,(u)), (1)

where (a, u) R M, (h, k) R TM, and

nx rx(u) TuM --* ker2(u)-
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is the projection onto the contact structure along the Reeb vector field. We
remark that gj := 09 o (Id x j) is a Riemannian metric on R M (such a is
called eg-compatible). If S is a Riemann surface with complex structure i, then we
define a map

fi= a,u) S--- R M

to be a pseudoholomorphic curve if

T o J(fi) o T.

If (s, t) are conformal coordinates on S, then this becomes

Csfi + J(fi)3tfi O. (2)

Using the expression (1) for and writing fi (a,u), we obtain the following
system of equations which is equivalent to (2)"

7r,2OsU + J(u)lr,2Otu O,

Osa- 2(u)Otu 0, (3)

Ota + 2(U)OsU O.

Pseudoholomorphic curves (with compact Riemannian surface S) were intro-
duced into symplectic geometry by M. Gromov in 1985 (see [4]) and became an
important tool there. They were used in contact geometry by H. Hofer in 1993
(with S C) to prove existence of contractible periodic orbits of the Reeb vector
field (see [6] or [1]).
We are interested in a different class of orbits of the Reeb vector field, the

so-called characteristic chords. The terminology is due to V. I. Arnold [2] who
raised a conjecture about the existence question. Let us give the definition: If
(M, 2) is a contact manifold of dimension 2n + 1, then a Legendrian submanifold
is a submanifold of M, which is n-dimensional and everywhere tangent to the
contact structure ker2; that is, for each p , we have 2(p)le 0. Then a
characteristic chord for (2, ) is a smooth path

x’[O,T]-M, T>O

with
ic(t) X(x(t))Vt (0, T),
x(O), x(T)

Arnold raised the following conjecture.
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CONJECTURE (see [2]). Let 20 be the standard tight contactform

1
20 (X1 dyl Yl dxl -t- x2 dy2 Y2 dx2)

on the 3-sphere

S {(x1, yl,x2, y2) R41Xl2 + y + x + y22 1}.

If f S3 --+ (0, 0(3) is a smooth function and is a Legendrian knot in S3, then
there is a characteristic chordfor (f2o,
There is almost nothing known about this problem. Arnold only mentioned

the case where f 1. Here are some simple examples.
Example 1. R3 with the standard tight contact form. We consider the contact

form 2 dz + x dy on R3. The Reeb vector field is just the constant vector field
c/z. If a closed curve (x(t), y(t),z(t)), 0 < < 1, is Legendrian, then we must
have

(t) -p(t)x(t)

and

0 z(1) z(O)

j(t)x(t)dt
0

y(t)(t)dt.

Consider now the projection of the above curve onto the xy-plane. The
(oriented) area of the set enclosed by the projected curve equals

(x(t)j(t) (t)y(t)) dt O,

and hence the projected curve must have a self-intersection, which implies the
existence of a characteristic chord.
Example 2. R3 with the (standard) overtwisted contact form. In cylindrical

coordinates, we consider the contact form 2 cos r dz + r sin r dqk Then for each
k Z, the knot

(r, z)(t) := t, 0)
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with 0 < < 2n is Legendrian, but the Reeb vector field on the cylinder
{(nk, t, z) lz R, 0 < < 2n} is given by

X(nk, t,z)- (-1)k d

hence there is no characteristic chord for these particular knots.

Remarks. (1) If M S c C2 is endowed with the standard tight contact
form (i.e., f 1), then we consider the Hopf-fibration

h" S -- CP
(ZO, Z1) [ZO, Z1],

0Z }. The fibres are exactlywhere [z0,zl] := {(z z]) S31qO S Zo Ozo, z
the orbits of the Reeb vector field. Let c S be a Legendrian knot. Then h(q)
encloses a set whose area is an integer multiple of 4n. This means that h(&a) has
a self-intersection, so there must be a characteristic chord for

(2) Even if f is C near to 1, it is not at all clear that characteristic chords
exist, since the dynamics of the Reeb vector field can change completely.

(3) If M is a strictly convex hypersurface in R4 with contact form 20lM, then
there is an open-book decomposition with binding orbit P (see [9]). If is a
Legendrian knot that is not linked with P, then there is also a characteristic
chord for . The proof is similar to the ones of examples (1) or (2), except that
we use the Reeb flow to project the knot onto a fixed leaf of the open-book
decomposition. The projected curve must also have a self-intersection.

(4) If M and P are the same as above, but P and ’ are linked, the answer to
whether there is a characteristic chord is not known. We can only give an affir-
mative answer in the special case where M is an "irrational ellipsoid"; that is,
where

M (Zl, 22) ff C2l
rl r2

=1

with r/r irrational and with contact form 20, but the proof is nontrivial (one
proves the existence of a nonconstant finite energy half-plane).

If H+ := {s + it C It > 0} is the closed upper half of the complex plane,
(M, 2) is a closed contact manifold, and ’ c M is a Legendrian submanifold,
then we define a finite energy half-plane to be a map

fi (a,u)" H+ ---. R M

that satisfies the following conditions:
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(i) 0fi + J(fi)0tfi 0 on
(ii) fi(OH+) = R x ;

(iii) u(H+) is contained in a compact region K = M;
(iv) fi has finite energy

E(fi) sup I fi* d(b2) <+
eX JH+

(where X; := {q e CO (R, [0, 1]) q 0)).
We prove in Section 2 that the existence of a nonconstant finite energy half-
plane implies the existence of a characteristic chord for (2, ). More precisely,
we have the following theorem.

THEOREM 1.1. Let fi be a finite energy half-plane that is, in addition, non-
constant. Then T :-fn+ u’d2 > O, and any sequence of positive real numbers
tending to +oo has a subsequence Rk +oo, so that the maps

[0, T] ---, M

u(Rk eni(t/T))

converge in Coo to some orbit x of the Reeb vector field X with x(O),x(T) .+w.
In the following, we only discuss the case n 1; that is, (M,2) is a 3-

dimensional manifold, and is a Legendrian knot. If x is a characteristic chord
for (2, ’), then the pair (x, ’) is called nondegenerate if

ker2(x(T)) Tt,OT(X(O)) Tx(o) 03 Tx(T),

where 0 denotes the flow of the Reeb vector field Xa. In Section 3 we prove the
following refinement of Theorem 1.1 under the additional assumption that x is
nondegenerate.

THEOREM 1.2. Let fi be a nonconstant finite energy half-plane. If Rk -- go is a
sequence of positive numbers so that U(Rkei(t/T)) converges to a nondegenerate
characteristic chord x, then, in fact, we have

lim u(Re’i(t/r)) x(t)

with convergence in Coo ([0, T]).
In order to study the existence question for characteristic chords, it is im-

portant to understand the behaviour of finite energy half-planes near infinity.
Assume that fi is a finite energy half-plane that satisfies the assumptions of
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Theorem 1.2. Let : R x [0, T] -. H+\{0} be the biholomorphic map (s, t)
e(n/T)(s+it). Considering the finite energy strip ? := fi o instead of fi, we have

+ 0,
* v(R x {0, T}) , where v := u o ,.. v(R x [0, T]) is contained in a compact region in M,. limsV(s, t) x(t).

Hence, by Theorem 1.2, we can study v [s0, ) x [0, T] M in a neighbour-
hood of x([0, T]) if s0 is suciently large. The other important ingredient for
further study of (s, t) (s, t) for large s is a local coordinate description of a
neighbourhood of x([0, T]) (Lemma 3.2). Then we may assume that. v has image in R3,. the Reeb vector field is parallel to the z-axis,. the characteristic chord is given by (0, 0, t),. the boundary condition is v(s, 0) R. (1, 0, 0) and v(s, T) R. (0, 1, O) +

(0, 0, T).
(We are only interested in characteristic chords that satisfy x(0) x(T).)
Writing (s, t) (b, x, y, z)(s, t) R x R for the components of , we prove the
following result, which states that the convergence of v(s, t) to x(t) is of expo-
nential nature.

THEOREM 1.3. Let : [so, )x [0, T] R x R be a finite energy strip as
explained above. Then there are constants bo R, r > O, so R so that, for each
multi-index (1, 2) N 2, 0 < p < min{r/2, l/T}, and s > so we have,

le-rSsup Idx(s, t)l < c
O< < T

le-rSsup Icy(s, t)l < c
O< < T

sup [d(z(s, t)- t)[ < c2e-,
O< < T

sup I8(b(s, t) bo s) < ce-ps,
O < < T

2where t3 (O/Os) (0/dt)2 and c, c, c > 0 are suitable constants (we adopt the
convention that zero is contained in N).

If we denote by (= (x, y) the components of v that are transversal to the
characteristic chord, we even get an asymptotic formula for . Before we can
state the result, we define an unbounded linear operator A with domain of
definition WI’2([0, T],R2), which we define to be the set of paths ," [0, T] R2

of class W1,2 satisfying the boundary conditions ,(0) R. (1,0) and (T)
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R. (0, 1). Then we define

Aoo" L2([0, T],R2) W’2([0, T],R2) L2([0, T],R2)

by

(Aoo-)(t) := -Moo(t)((t),

where we abbreviate Moo(t) := M(0, 0, t).
TI-mORM 1.4. If ( does not vanish identically, we have the asymptotic formula

’(s, t) exp a(r) dz [e(t) + r(s, t)],

where
e W’2([0, T],R2) is an eigenvector of Aoo corresponding to some eigenvalue
2 <0 (here L2([0, T],R2) with the equivalent inner product (., .)=

(.,-JoMoo(t).> dt) and Aoo is selfadjoint;
a [so, c) -- R is a smooth function satisfying a(s) ---. 2 as s -- ;r: [so, c) [0, T] -- R2 is a smooth map with

Ic’r(s, t)l ---* O,

as s -+ o uniformly in t, and where N2 is some multi-index (recall that, by
convention, 0 N).

It is important for the proofs of both Theorems 1.3 and 1.4 that ( solves a
boundary value problem of the following type:

Cs(S, t) + M(’(s, t), z(s, t))ct(s t) O,

(s, 0) R. (1,0), (4)

(s, T) e R. (0, 1),

where M is a matrix-valued function defined near { (0, 0)} [0, T] c R with
M2=-Id,
MTJoM Jo with Jo (+ -x),
-JoM >0.

Defining the differential operator A(s) acting on paths 7 wrl’2([0, T], R) by

(A(s))(t) := -M(((s, t),z(s, t)):p(t),
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we can write equation (4) as follows ((s) := (s, )):

C3s((S) A(s) (s).

One can find inner products (., )s on L2([0, T], R2), which are equivalent to the
ordinary LZ-product, so that A(s) becomes a selfadjoint operator on

(L2([0, T], RE), (.,.)s)"

This is essential for the proofs of both Theorems 1.3 and 1.4. In [7] and [8],
where similar results are derived for finite energy planes, the authors can carry
out a change of coordinates so that M(s,t), A(s), and (.,.)s are transformed
into s-independent quantities. In contrast to [7] and [8], we are dealing with
a boundary value problem (4), and any change of coordinates removing the
s-dependence in M(s, t), A(s), or the L2-product will make the boundary con-
dition nonlinear.
So we have to work with an L2 inner product that depends on s and a family

of operators (A(s))s>so, instead of just one operator. This is the main reason that
Theorems 1.3 and 1.4 have to be proved differently than their counterparts in
[7] and [8].

2. Finite energy half-planes and orbits of the Reeb vector field. We describe
now the relationship between pseudoholomorphic half-planes of finite energy
and characteristic chords. The main theorem of this chapter is as follows.

THEOREM 2.1. Let fi be a finite energy half-plane as above, which is, in addi-
tion, nonconstant. Then T := fn+ u* d2 > O, and any sequence of positive real
numbers tending to +c has a subsequence Rk -- +, so that the maps

[0, T]- M

u(Rk eti(t/T))

converge in C to some orbit x of the Reeb vectorfield X with x(O),x(T) e L’.

The proof requires some preparation. The following proposition states that
finite energy half-planes with "trivial d2-energy" must be constant. The bound-
ary condition plays an important role in the proof.

PROPOSITION 2.2. Let fi be a finite energy half-plane with

u’d2=0.

Then fi must be constant.
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Proof With z s + it, we compute

L0
/

u* d2
/

(]n,sul] + ]zat3tul2) ds ^ dt.

Hence nx o Tu(z) H+ ker 2(u(z)) is the zero map for all z e H+. Moreover,

1
0 (Izdsul2 + Izd,ul)ds ^ dt

u’d2

-d(da o i)

Aa. ds ^ dt;

hence a is a harmonic map. Define now

f.H+R

f(s, t) "= C3sa(S, z) dr,

and note that c3ta(s, 0) -2(u(s, O))cOsU(S, 0) 0 because of the boundary condi-
tion. Then

(+ := a + if H+ --, C.

is a holomorphic function with (I)+ (SH+) c R. We define the holomorphic func-
tion

’C-C

(z)
(z) ::

if z H+,
if z C\H+.

Now, with q E and z# "= d((s) dt) ’(s) ds ^ dr, compute

(+)*Z# IH qt(a)(Csa2 -k cta2) ds A dt
H+ +

<+03.
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We distinguish the following three cases:
(1) + is constant.
(2) IV/l is bounded, but + is not constant.
(3) IV /l is unbounded.
Case 1. If+ is constant, then a is constant, too. Since

2(u)t3sU -dta 0

and

2(u)3tu 3sa O,

the map Tu(z) has an image in the kernel of 2(u(z)). However, we saw before
that n o Tu(z) is the zero map, so Tu(z) is always zero and u is constant.
We show now that the other two cases cannot occur.
Case 2. If IW/l is bounded, then IVl is also bounded. By Liouville’s

theorem, the functions 3sO, 3t@" C C must be constant; hence, @ must be an
affine function

.z

with fl C and C\{0). Since @(tH+) @+(3H+) c R, the numbers and fl
must be real. We obtain

In+ (@+)*r# L+ ’(a)(cgsa2 + cgta2) ds ^ dt

(2 J qt (a) ds ^dt
H+

[l In+ /(a) da ^ dt

+ for any nonconstant b s E

in contradiction to n+ fi(d(#2)) < +.
Case 3. If [VO+l is unbounded, we can pick sequences (z) c H+ and e 0

so that

R := IVcI)(z)

and

Rkek ---+ + o.
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Applying a well-known lemma of Hofer’s (see [1] and [5]), we find sequences
ek 0 and (Zk) c n/ with

kRk klV’/(zk)l > ekR
Iz’ zl < ’,
Vo+(y)I < 2 IVO+ (Zk) lVY with lY Zkl < ek.

We have to consider the following cases, where Zk Sk / itk:
tkRk + (without loss of generality, assume tkRk / +),
tkRk -- [0, + 00).

Let us begin with the first case. Define the holomorphic maps

>(z) := / z+ >/(z),

which are defined on

k ((S, t) fit > --tkRk}.

We compute

1
v>(z) iV>+(zk)l

Hence

IW(O)l- 1,

IV>k(Z)l 2 for z e BekR (0),

,(o) 0.

Let K be a compact subset of the complex plane. Choose k0 so large so that for
all k > k0 we have K c flk and K c BkR(0). Then (Ok)k>ko is a sequence of
nonconstant holomorphic functions on K, which is uniformly bounded in C.
Using the Cauchy integral formula, we obtain uniform C-bounds on K. By the
Ascoli-Arzela theorem, there exists a subsequence (Ok,) c (Ok) that converges
in C(K). Iterating this process by taking larger K and extracting further sub-
sequences from (Ok,), we get, by choosing a diagonal sequence, some sub-
sequence of (Ok) that converges in Co to a holomorphic map

F" C- C

satisfying IV(0)l- 1 and IV(z)l 2. By Liouville’s theorem, F must be an
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affine (nonconstant) function. Defining k(S) := (S Re(O+(Zk))) E, we have

+ > E(a)

On every compact K c C, we have

for k +. It follows that, for any nonconstant E,

+ >

f

’(s) ds ^ dt

This contradiction shows that the first case cannot occur. So let us consider the
second case.
Here we define the following holomorphic maps, where z s+ it and

Zk Sk -[- itk

( kk) O+(Re(k(Z) 0+ Re Zk + Zk)

(+ s, +, (s,,o).
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They are defined on the upper half-plane H+ and map the boundary t3H+ into
the real numbers. We calculate

1
[Va(s, t)l iV+(Sk, tk)[

V+ Sk +-kk’
so that

IVk(O, Rktk)l 1

and

[Vk(S, t)l < 2

for all (s, t) BekRk (0, Rktk) H+. For any compact subset K of H+, we can find
some number k0 so that for all k > k0 we have K c BkRk(O, Rktk). Since
@(0) 0, we obtain a uniform Cl-bound for the sequence (@k)k>ko" Reasoning
as before, we obtain Clo convergence of some subsequence of (@k) to a non-
constant holomorphic map

W :H+ C,

which satisfies [VW(z)[ < 2 and W(dH+) c R. Using the Schwarz reflection prin-
ciple, we can extend W to an entire holomorphic function that must be affine by
Liouville’s theorem. H := W(H+) is then again a half-plane in C, and we com-
pute, as before,

>

where k :-- (" Re +(Sk, 0)) E . On every compact subset K of H+, we have

For any nonconstant b E, we obtain the contradiction
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qb’ (s) ds ^ dt

q-oo,

which finally proves the proposition.

The next proposition shows that the gradient of a finite energy half-plane
is bounded in C. For convenience, we transform a finite energy half-plane to
the infinite strip R x [0, 1] by considering := fi o instead of t, where is the
biholomorphic map

b" R [0, 1]--, H+\{O}

b(s, t) := en(s+it).

We call a finite energy strip since E() E(t) <

PROPOSITION 2.3. Let =(b,v)’Rx[0,1]RM be a solution of the
boundary value problem

s) -- J())t) O,

v(R x (0, 1}) c

Assume, moreover, that v(R [0, 1]) is contained in a compact region K M and

<

Then

sup IVY(s, t)l < +.
(s,t) eRx[0,1]

Proofi Assume there are z (S’k, t’k) e R [0, 1] with

Then we must have Sk +. Otherwise, if we had Sk < c for a subsequence,
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then the sequence (z) would be contained in some half-ball B(0), but
supn(0)lV < const and IVY(z)] rte’s]vf(b(z))]. This is a contradiction since
this expression would be bounded.
We may assume without loss of generality that the sequence (t) converges to

some to e [0, 1]. Choose now a sequence (e) of positive real numbers converging
to zero so that still Rkek --+ +oo. Hofer’s lemma gives us now new sequences
ek "N 0 and (zk) c R [0, 1] with

:=   lW(z )l
-<

IW(y)l < 2 IW(Zk)lWY with lY Zk] < k.
Define now

fk(S, t) := (bk(s, t), Vk(S, t))

b Zk nt- b(zk), v zk "l-

where z (s, t) is contained in

fk := {(S, t) C tkRk < < Rk(1 tk)}.
We have

(1) IWk(0)I 1,
(2) IW(z)l 2 ’v’z e BR(0) ’k,
(3) bk(O) O,
(4) Vk (t3fk) c .

Because of (2), (3), and the assumption v(R [0, 1]) c K, we have a Co-bound
on all the maps k uniform in k. Using the usual regularity estimates (see, for
example, [1]), we get uniform Come-bounds. This implies, by the Ascoli-Arzela
theorem, that a subsequence of k converges in Cloc to some limit

where f C depends on the following cases:
(1) We have -tkRt -+ (-, 0] (then necessarily Rk(1 tk) + +m), where

we have f n_t := {z e C Im(z) > -l} and w(t?n_t) c 2’.
(2) We have --tkRk --+ --oo.

(a) For

Rk(1 tk) --+ rn [0, +oo),

we have f Hm := {z e C Im(z) < m} and w(OHm)
(b) for

Rk(1 tk) -+

we get f C.
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In all these cases, we have

IV,(O)l- 1,

IV(z)l 2.

We claim that
() < (),
fw*d2=O.

Take b e E, and define bk e ]2 by

qk(S) := (S- b(zk)).

Then

f

j , d(x)Ok d(,)
Bk(Zk)C(Rx[O’I])

< [ * d()

Now choose any compact subset K of f and find k0 N so that, for all k > k0:

K c BRkk (0) & "k.

Then

; (o) < E() Vk > ko,

and therefore

Since this holds for all compact subsets K of f, we obtain

* d() < (),
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and, finally, taking the supremum over all b E,

Now let K be any compact subset of f. Then, for k large enough, we have
K c Bgkek (0) (’ "k and

w* d2 I v d2
K

+ I d2
Rke (O)F’’k

I w*d2-JKVd2K
+ IBt (Zk)C(Rx [0,1])

The first term converges to zero for k +, but the second one also does
because of

v’d), Iix[0,1] x
<

where q0 -= 1 E. This implies finally

because the integral vanishes over any compact subset of f. If f is a half-plane
in C, then Proposition 2.2 would imply that must be constant, which contra-
dicts the fact that the gradient in zero does not vanish. Hence our assumption at
the very beginning (that the gradient is unbounded) must be false.

Since Proposition 2.2 also holds for finite energy planes (see [1] or [6]; the
proof is simpler than for half-planes), we also arrive at a contradiction in the
case f C, which finishes the proof of the proposition. F]

Now we are ready to prove Theorem 2.1.
We assume that we have transformed our finite energy plane to a finite energy

strip (b, v). So take any sequence Sk ---> + and define

k" R [0, 1] R M

k(S, t) := (b(s + st,, t) b(sk, 0), v(sk + s, t))

Then

(bk(s, t), Vk(S, t)).

bk(O, O) 0
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and

vk(R (0, 1}) .
As before, we get Clo-bounds, and a subsequence of (k) converges in Clo% to
some

W= (fl, w)" R x [0,1] R M,

satisfying
Ofv + J(fv)tfv 0,
w(R x {0, 1)) =
() < +,

/(o, o) o,
sup(s,Oi[o,]lVfv(s,t)l < +c.

Fix so R. If -R < min(so + Sk, 0}, then

i--R,so+Sk]X[O, 1]
v* d2 l{-R)x[O,1] {SO+Sk x [0,1]

+ I[--R,so+sk]x {0} 1)’2- I[--R,so+sk]x{1}
{SO+Sk x [0,1]

because of the Legendrian boundary condition. Moreover, the second term tends
to zero as R +, since v(s, t) converges to a point as s --. -. Hence

J(-o,s0+sk] x [0,1]
v* d2 f{SO+Sk}[O,1]

I{so)x[O, 1]

and

J{so} x [0,1] v*d2=JH+U*d2=: T>0.

For every R > 0 we have

[--R+sk,R+sk]X[O, 1]
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but this converges to zero as k - because the integrand is nonnegative and

v’d2< .
Hence f[-R,R] [0,1] w* d2 0 for every R > 0, and therefore

w’d2 =0.

As in the proof of Proposition 2.2, we see that r o Tw(z) is the zero map, and
therefore Aft 0. We note that, due to the boundary condition

w(R {0, 1}) ,
Otfl -2(W)OsW must vanish identically on R x {0, 1 }. Our aim is to show that fl
must be an affine function depending on s only. Let us see first that this implies
the existence of a characteristic chord.
Assume that

fl(s, t) as + b

with a, b R. Then

OsW .OsW + ((w)sw) X(w)

-. X(w)

=0

and

tW 2tw "q- ((W)gtW) X).(W)

Os. X(w)

a X,(w)

since fl const would also imply that w is constant in contradiction to

f{s0}[0,1] w*2 > 0. Hence

(t)x(t) :=w S,
a
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satisfies

1
tw s,(t)

a a

=X(x(t)).

We compute

T I{so}x[o,1] w*2 (2(w)Otw) dt a,

and therefore

v(s,t) (Ts + c,x(Tt)).

By construction,

V(Sk, t) x(Tt) in CO ([0, 1]),

which is equivalent to

u(en(s+it)) -- x(Tt)

and, replacing by t/T,

u(en(S+i(t/T)))---x(t) in Coo([0, T]),

where x(0) w(s, 0) e Ae and x(T) w(s, 1) e ; hence x is a characteristic
chord.
We are left with the proof that fl is an affine function depending on s only. We

put ), := Otfl and recall that
AT=0,
C :- suplx[0,1]l), <
(s, O) (s, 1) O.

If we define

(s, t) := Cs},(s, ) dz OtT(o’, O) da,

then f := +/fi is a holomorphic function with a bounded real part; g(s, t)’=
ef(s,t) is also holomorphic with

Iv(s, t)l le’(s’t). e(S’t)l < ec
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and

Iff(s, 0)1 Iff(s, 1)1 1.

For each e > 0, we define the holomorphic function h on R x [0, 1] by

1
h(z)

1 iez

Then

Ih(z)l2
1 < 1,

g2S2 + (1 + gt)2

and therefore

Ig(z)h(z)l 1

for z R {0, 1 }. We also have, for z iR,

Ih(z)

in view of I1- ig212 g2s2. Consider now the holomorphic function oh on
f := [-eCe-1, eCe-1] x [0, 1]. We have

IO(z)h(z)l 1

for z e cOf and, by the maximum principle, this estimate holds also for z f.
Since also IO(z)h(z)l < 1 outside f, we obtain finally that

Io(z)h(z)l < 1 Vz R [0, 1], e > O.

Fixing z R [0, 1] and considering the limit e 0, we conclude that ]g(z)[
e(s,t) < 1, and therefore 7(s,t)< O. Repeating the same argument with
instead of ,, we obtain y(s, t) > 0, so ), 0.
Hence fl does not depend on and is harmonic, which implies

fl(s, t) as + c

with real constants a and c. This completes the proof.
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3. Asymptotic behaviour of nondegenerate finite energy half-planes.

3.1. Convergence at infinity. Let (M,) be a closed 3-dimensional contact
manifold, let Z’ M be a Legendrian knot, and let x:[0, T] M be a non-
degenerate characteristic chord; that is,

c(t) X(x(t)) for 0 < < T,

and

x(O), x(T) .a

ker2(x(T)) TOT(X(O))Tx(o) T(T),

where (p denotes the flow of the Reeb vector field Xa.
For the moment, we stick to the case where

x(O) x(T).

If it happens that x is a closed orbit, then we will only get an immersion in
Lemma 3.2 below. It is possible to avoid this problem if we pass to the universal
cover of a tubular neighbourhood of x and carry out our constructions there. In
this section, we prove the following theorem.

TrmOREM 3.1. Let be a nonconstant finite energy half-plane. If Rk -- x3 is a
sequence of positive numbers so that u(Rkeni(t/T)) converges to a nondegenerate
characteristic chord x, then we have, in fact,

lim u(Re’a(t/T)) x(t),

with convergence in C ([0, T]).
First we show that there is some kind of normal form near x([0, T]).
LEMMA 3.2. There are open neighbourhoods U M of x([0, T]), V c R3 of

{ (0, 0)} x [0, T], and a diffeomorphism J: U-V so that
* (x(t)) (0, O, t)for all [0, T],

d/* (dz + x dy) 2Iv.
Proof. Take f > 0 so that x [-fi, T + fi] - M is still an embedding (recall

that we assume x(0) : x(T)). We identify T(o)M ker 2,(x(0)) R. Xx(x(O))
with R R2 ( R. If B’ R and W M are suitable open neighbourhoods of
zero and x(O), respectively, then the exponential map

exp B’ W

with respect to any Riemannian metric on M is a diffeomorphism with exp(0)
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x(0) and T exp(0) IdR3. Then define

:Bx [-,T+]M

(Xl,X2; t) - rpt(exp(xl,x2;O)),

where B (R2 {0}) c3 B’ and Pt is the flow of Xx. The map has the follow-
ing properties:

(0, 0, t) pt(x(0)) x(t), in particular, [{(0,0)}[-,r+] is an embedding;
the derivative

T(Xl,X2, t) R x R T(xl,X,t)M

is an isomorphism if B is chosen sufficiently small.
Then there is a neighbourhood U of {(0,0)} x [-fi, T +6], so that Olv is a
diffeomorphism onto its image. Moreover, we have the following with 21 := 0*2:

,,(0,0, t)(l,2, z)= (p2)(x(O)). (X,(x(O))+ (1,2,0))

that is, ;1(0, 0, t) dt 20(0, 0, t) with 20(Xl,X2, t) X1 dx2 -+-dt. We have used
the fact that the flow of the Reeb vector field 0t preserves the contact form

02 2. The Reeb vector field of the contact form 21 is given by

X2, (x1, x2, t) Ot"

If we write .1 a dxl d- b dx2 -+- c dt, then d21 (Ox, b cx2 a) dxl A dx2 -+-
(t3,1c Ota) dxl ^ dt + (c3,2c Orb) dx2 ^ dr. We obtain from XI (0, 0, 1) that c
is identically 1 and

CxC- Ota --Ota =-- O,

t3xzC- Otb -ctb O.

Hence

2l(Xl,X2, t) a(xl,x2)dxl q- b(xl,x2)dx2 q- dt

and

d)tl(Xl,X2, t) (c3x,b 3x2a) dxl A dx2.
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21Ad21 never vanishes, and hence OXl b -O,:a is never zero. We may assume
that always O,,lb-Ox:a > 0, since otherwise we could have composed q with
the diffeomorphism (Xl, x2, t) (x2, xl, t), which would have interchanged the
roles of a and b in the formulas above. Defining for s e [0, 1]

/s’= (1 s)21 + s20,

we compute

[(1 s)(O,b Oxa) + s] dxl A dx2 ^ dt

Hence (fls)O<s<l is a family of contact forms all having the same Reeb vector
field O/Ot (0, 0, 1). We can write

R R- (0,0, 1) ) kerPs(Xl,X2, ).

Since/s is a contact form, d/ must be nondegenerate on ker/s- Choose now a

time-dependent vector field Y with

iyAu =_ O,

d
Ys ds --ds flS ,1 ,o.

Choosing the neighbourhood near {(0, 0)} x [-6, T + 6] sufficiently small, the
flow % of Y exists until time one because 21 and 0 coincide on {(0,0)}
[-, T + ], which implies Ys(0, 0, t) 0 for all s. We compute

d-s l q lu + L t

q);(,O ,1 q- d(iy,Us) + iy d/us)

*(dt-b X1 dx2) and (tpl o @-1Hence .1 flO (PtflO (PlI (Pl
required diffeomorphism.

oq-1) is the

Proof of Theorem 3.1. Assuming by Whitney’s embedding theorem that M
is embedded into some RN, we can equip the set C([0, T],M) with the usual
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Frchet metric. Then the set

X {y e Coo ([0, T], M)[ y(O), y(T) .}

also becomes a metric space.
By Lemma 3.2 and the nondegeneracy assumption, the following is true:

There is an open neighbourhood U c X of x so that U does not contain any
path y X that satisfies Xa(y).

Define the set

{y e xl)

Take open neighbourhoods V1, V2 c X of x and ifr\{x}, respectively, which
have positive distance from each other. As in the proof of Theorem 2.1, we con-
sider, instead of fi, the finite energy strip

f= (b,v) fio. R x [0, T] R x M

with (s, t) e (n/T)(s+it). By assumption, there is a sequence Sk -- +(213 SO that

in CO ([0, T], M).
Hence V(Sk,. ) V1 for all large k. We now proceed indirectly. Assuming that

v(s, t) does not converge to x(t) in C ([0, T], M) as s oe, we pick a sequence
ak -* oo so that V(ak, t) does not converge to x(t). By Theorem 2.1, the sequence
(O’k) has a subsequence (a) so that v(a’k,. converges to some 2 ,_gaT in
Coo ([0, T], M). Since 2 x, we have v(a’k,. V2 for all large k. Passing to suit-
able subsequences of (Sk) and (#k), we may assume that

Sk ( t7k Sk+l

for all k. Moreover, Sk e V1 and a e V2 for k sufficiently large.
Because s - v(s,. is a continuous path in X, we can choose s’k (Sk, tTk) SO

that

) v:. (5)

Using Theorem 2.1 again, we conclude that (s) has a subsequence (s’) so that
v(s’k’,. converges to some y if’r, which is not possible in view of y V1 w V2
and (5).

3.2. Exponential decay estimates. We have shown in the last section that
under the assumption of nondegeneracy, the finite energy half-plane actually
converges asymptotically with the characteristic chord. Studying the finite
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energy half-plane carefully near the chord, we are able to show that this con-
vergence is of exponential nature. In view of the local coordinates that we estab-
lished in Lemma 3.2 and the convergence result (Theorem 3.1), we are in the
following situation:

M=(R dz+xdy) =(R3 20)

o(t) (o, o, t); o < < r.

For k 1, 2, we have Legendrian curves

7k "(--1, +l) --- R3; .Lfik "= )’k((--1, +l)),

which are embedded and satisfy

(0) (0, 0, 0),

r2(o) (0, 0, T).

Since we assume that we have a nondegenerate situation, we get

SpanR{gI ’1 (0); 2 22(0)) R2 x {0).

We have a finite energy strip

’[so, c) [O,T]RR

(b, v) (b; x, y, z),

where we choose so so that the finite energy strip has an image in the coordinate
neighbourhood given by Lemma 3.2 whenever s > so. We summarize some
properties of v:

(1) t3sb 2o(v)Otv 0;
(2) 2o(V)OsV + ctb 0;
(3) nOsv+j(v)X,oOtv=O where j:ker2o--ker2o is a complex structure

compatible with d2o; that is, j2 -Id and d2o o (Id j) is a bundle metric
on ker 20;

(4) v(s,. ---, xo in C ([0, T], R3) as s -, c, which implies

Orb(s, t) O,

Osb(s, t) ,1
S--’oo

in C ([0,T], R3);
(5) V(S, 0)
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The aim of this section is the following theorem, which states that we have
exponential convergence of (s, t) to (s, t) - (s + const, 0, 0, t).

TI-rEOREM 3.3. Let : [so, oo)x [0, T] R x R be a finite energy strip as
explained above. Then there are constants bo R, r > 0, so e R so that for each
multi-index (1, 2) N, 0 < p < min{r/2,1/T}, and s > so we have

le-rSsup Icx(s, t)l < c
O< < T

e-rSsup lYy(s,t)] <c
O< < T

sup [d(z(s, t) -t)[ < c2e-,
O< < T

sup [d(b(s, t) b0 s)[ < c3e-p,
O < < T

2where t3= (t/c3s)l(t/t3t)2 and c,c,c > 0 are suitable constants. (We adopt
the convention that zero is contained in N.)

) A02(0)= (1). IfDefine a linear map AoeGL3(R) by Ao)(0)= (o o
)1(0) (11) )2(0) (2 ), then Ab--1 (alia21 a22a12 00). Considering (b, Aov)

0 0

instead of (b,v)=, we may still assume that properties (1)-(5) hold

)(0) ()o )(0)= (o)o and ja complex structure on ker2, wherewith

2 is given by

21 (allX q- a12Y). (a21 dx + a22 dy) + dz,

which is compatible with d2 =detA-1 .dx^dy. The Reeb vector field
XI (x, y, z) still equals (0, 0, 1).
For > 0 small, we may write

Ul ( c1 ((x, fl(x),gl(x)) lx (-,)),

v_ . (f: (y), y, o(y) y (-,) ),

where U1, U2 are some open neighbourhoods of (0,0, 1) and (0,0, T), respec-
tively, and fl, f2, 1,2 are real-valued functions defined on (-fi, fi) with
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o =A(o)

0 1(0); T 92(0),

o

0-- 1(0) 2(0).

269

Now choose a smooth function fl: R [0, 1] for some 0 < e < T/2 with

fl 0 on (-oo,e)

fl--1 on(T-e,)

fl’(z)>O for allzR.

Define

(--6,) (--,) R R3

y y-f1()
z z + h(x, y, z)

where h is given by

h(x, y, z):= fl(z)[T- g2(Y) + gl(x)] gl (x)

and where > 0 is chosen so small that det DO(x, y, z) # 0 whenever Ix[ and lY[
are smaller than . In view of O(0, 0, z)= (0, 0, z), the map is a diffeomor-
phism between certain open neighbourhoods of xo([0, T]) { (0, 0) } [0, T] satis-
fying DO(0, 0, z) Ids3. For sufficiently small , we have O(x, fl(x), 91 (x))
e R. (1,0,0) and O(f2(y),Y,92(Y)) e R. (0, 1,0) + (0,0, T). For s large enough,
we consider now (b, O(v)) instead of . The properties (1)-(5) still hold with 20
replaced by 22 ((1)-1)’21, while we may replace 51 and 00@2 by R-(1, 0, 0) and
R. (0, 1, 0) + (0, 0, T), respectively. Moreover, j is now a compatible complex
structure on ker 22. By computing DO and its inverse, we see that 22(0, 0, z) dz,
d22(0, 0, z) det A-1 dx ^ dy, and

X,h(x, y,z) (1 + Ozh(-l(x, y, z))) -1- (0, 0, 1) =’f(x, y,z). (0, 0, 1)
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with f(0, 0, z) -= 1. Moreover, we have

1
22 "7 dz + C dx + C2 dy

J

with cl c2 0 on {(0, 0)} x R and d2:z a. dx ^ dy with a det A-1

{ (0, 0) } x R. We calculate

df(p) -(1 + Ozh(O-(p)))-2Ddzh(-l(p))DO-l(p);

hence

df(0, 0, z) -(DOzh)(O, 0, z) 0.

The contact plane ker 22(x, y, z) is generated by the vectors

el :--

1
0

1 + Ozh(-1) (x,y,z)

(1)l
(x,y,z)

and

e2

0
1

+ (x,y,z)

(0)
(x,y,z)

We compute

7Ut(Vl, 2, 3)--(1,2, V3)-
1 + Ozh(-1) (0,0, 1)

-Vlel+o2e2.

Then the equation n2OsV + j(v)n,z2Otv 0 is equivalent to

C3sX el + t3sy e2 +j(x, y,z)(Otx el + Oty e2) O.

With

j(x, y,z)el mll(X, y,z)el + ml2(x, y,z)e2,

j(x, y, z)e2 m21 (x, y, z)el + m22(x, y, z)e2

on
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and defining M(x, y, z) "= (mll m21’ (X, y, Z) we obtain

Osy + M(x, y, z) Oty
O.

Summarizing, (b, x, y, z) (b, v)" [so, o) x [0, T] R x R3 satisfies the fol-
lowing:

(1’) bsb ,2(/))0t/) 0,
(2’) 0tb + 22(v)bsv 0,
(3’) (0x z)(’) O,0sy -{- m(x, y, Oy

(4’) v(s,. xo in C ([0, T], R3) as s , which implies

Otb(s,t) ---,0

Osb(s, t) s--, 1

in Coo ([0, T], R3),
(5’) v(s, 0) R. (1,0, 0) and v(s, T) e R (0, 1, O) + (0, O, T).

Since j is compatible with d22, M has to satisfy
0 ;1)(a) MTJoM Jo with Jo (+1

(b) -JoM > O.
We derive first an exponential decay estimate for the components ( (x, y) of

v transversal to the orbit x0 and to their derivatives. We write

0 Os(S,t) + M((s,t),z(s,t))Ot(s,t)

Os(S, t) + M(v(s, t))Ot(s, t).
(6)

We consider the following family of inner products on L2([0, T], 112)

(Ul,U2)s := (Ul(t),-JoM(v(s,t))u2(t))dt. (7)

We define

W’2([0, T],R2) := {u e wl’2([O, T],R2) u(0) 6 R. (1,0) 1
u(T) 6R-(0,1) f’

where we use the inner products (7) to define

(U, t))s,l,2 :-" (U, 13)s -+- (U1, t)t)s
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We know that the matrices M(v(s, t)) converge to M(0, 0, t) as s uniformly
in t. In particular, there is a positive constant C so that

I(-M(v(s, t))jo)l/Zl I(-JoM(v(s, t)))1/21 < C

for all (s,t) [so, )x [0, T]. Therefore the L2-norms induced by the inner
products (7) are equivalent to the ordinary LZ-norm II. 11.2, and we have an esti-
mate

Cllull =
1
 llul[, =

with some constant C > 0 not depending on s. We prefer to use (7) instead of the
ordinary LZ-product since it is better adapted to our problem, as we will soon
see.

Define the following family of unbounded linear operators

A(s)" L2([0, T], R2) = WI’2([0, T], R2) L2([0, T], R2)

(A(s) u)(t) := -M(v(s, t))i(t).

Then (6) can be written as (((s) := ((s,.))

3s(S)(t (A(s) (s))(t). (8)

We state some basic properties of A(s).
PRO’OSITION 3.4. (1) A(s) is a selfadjoint operator on (L2([0, T],R2), (., ")s).
(2) Ker A(s) {0}.
(3) There is a constant >0, not dependin9 on s, so that for all

y W’2([0, T],R2) and s [so, az),

1/2 )(In the following, we write II. (.,.)

Proof First we note that A(s) is densely defined since C([0, T],R2) is
contained in W’2([0, T],R2) and is dense in L2([0, T],R2). We compute for

12 2u, u2 Wr’ ([0, T], R )"

(A(s)u,u) -M(v(s,t))i(t),-JoM(v(s,t))u(t))dt
0

T

(itl(t),Jou2(t))dt
0
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T

[(Ul(t) JoUE(t))] t=r- (Ul(t),JoiE(t))dtt=O
0

(JoUl(t),itE(t))dt
0

((A(s) u2)(t),MT(v(s, t))JoUl(t)) dt

(Ul,A(s)u2)s.

Hence we have shown that A(s) is symmetric, and therefore the adjoint operator
A*(s) is an extension of A(s). We have to prove that its domain of definition
D(A*(s)) is actually contained in Wrl’2([0, T],R2). We have y D(A*(s)) if and
only if there is some y* L2([0, T], R2) so that

(A(s)x,y)s (x,Y*)s for all x Wr.l’2([0, T],R2).

Now let y D(A*(s)). If x C([0, T], R2), then

(5, JOY)L2 (A(s)x, Y)s

(x,y*)s

Hence y has weak derivative M(v(s))y*L2([O,T],R2), that
W1,2([0, T], R2). By the Sobolev multiplication theorem, the function

is, y

rp(t) := (x(t),-Joy(t))

is also in W1,2([0, T],R2) for any x e Wr’2([0, T],R2); and because of the
Sobolev embedding theorem, 0 is even continuous. Therefore

(x(T), -Joy(T)) (x(0), -Joy(O)

T

ip(t) dt
o

I((t),-Joy(t)) dt + (x(t),-Jo(t)) dt
0 0
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If we pick now some x e WI’2([0, T],R2) that satisfies x(0)= (0,0) and
x(r) (0,0), we conclude that y(r)eR. (0,1). Similarly, we get y(0)
mR. (1, 0) and we have shown y D(A(s)), so that A(s) is selfadjoint.

Property (2) of Proposition 3.4 holds because there are no constant nonzero
paths in Wrl’2([0, T],R2). Assume now that (3) is false. Then for each sequence
6k \ 0, there are sequences (?k) -- WI’2([0, T], R2) and (Sk) -- [So, ) so that

Defining ak := 7k/llTkllsk Wrl’2([0, T], R2), we obtain

ll&kllV Cll&kll  CIIA(Sk)klI < CrSk " 0

II klIL= Cll klls, c

Since the inclusion wl’2([0, T], R2) L2([0, T],R2) is compact, we may pass to
some subsequence (which we still denote by (ak)) that converges in L2 to some

L2([0, T], RE). Then (k) converges in W1,2 to and & 0, so must be con-
stant. Recalling that ak e W’2([0, ,T1, R2) and that Wr1’2 is a closed subspace of
wl,2([0, T],R2), we obtain W’([0, T],R2) as well; therefore, 0 which
contradicts

1
II  llv > 0,

and we are done. [

IAr/’+2,2For fixed l’ N and ((s) "r ([0, r], R2), we introduce the column vector

t t l’ )W(s)  (sl,-Ss (Sl,

We note that each component of W(s) satisfies the boundary conditions

tk

8s (s, O) e R. (1, O) and
6k

-s ((s, T) R (0, 1).

Hence we can view W(s) as an element in WF2’2([0, T], R2(/’+l)).
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Applying 0k tk/sk to our differential equation (8) (with k > 1), we get

275

k ( k ) o(--M(v(s, t)))Ot(Oks-l((s, t))Os(Oks((S))(t) (A(s) Oks((S))(t) +
/=1

k

--: (A(s)" osk(s))(t) - Alk(S t) t(tks-l((s, t)).
/=1

If we put

’ M(v(s, t)) 0 0

M(v(s, t)) :=

o o M(v(s,t))

diag(M(v(s, t)),..., M(v(s, t))),

d(s) := -l(o(s, )) ,

A,(s, t) :=

o o o o
All(S, t) 0 0 0

A22(s, t) A12(s, t) 0 0

\ Al,l,(S, t) Al’-l,l’(S, t) Al’-E,l’(S, t) AI,/,(s, t) 0]

then we obtain an equation for W(s):

tsW(s d(S) W(S) -l- (S, )tW(s). (9)

Remark. Let us emphasize a tiny detail that becomes extremely important
later: Although W(s) contains derivatives ok( up to order k l’, the expression
Z(s,. )t?tW(_s) only contains s-derivatives up to order l’- 1 because t?’( appears
already in A(s). W(s).
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We define the nonnegative function

(W(s,t),-o3CCl(v(s,t))W(s,t)>dt,a(s) := IIW(s) lls
o

where J0 diag(J0,..., J0). Then

and

( W(s, t),-Jos(,,(s, t))W(s, t) > dt’(s) (sW(s), W(S))s +
o

o"(s) (ssW(s), W(s))s + IIsW(s)ll
T

+ 2 (sW(s, t),-)Ods[(v(s, t))]W(s, t)) dt
0

(W(s, t), -Odss[ll(v(s, t))]W(s, t)> dt+- o

T + T + 7 + T4

> T + 73 + 7.

Note. In the following, we write e(s) for a positive function that converges to
zero as s oo, if it does not matter what e(s) actually is. We also denote positive
constants by c if the size of the constant is not important.
We estimate 7 and 7 as follows, with II. I1,= being the ordinary L2-norm:

< t(s)(1 + I(s)(v(s))lco(to, rD)ll(s). W(s)ll=llW(s)ll=

(s)II(s) W(s)Ilsll W(s)IIs,

< e(s)llW(s)lls

We obtain this from the fact that v(s, t) - (0, 0, t). This implies also

Ih(s, t)l, Ids&(S, t)l 0 (10)

as s --, uniformly in t.
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Now we estimate T1. We calculate

ssW(s) -s[]41(v(s))]t W(s) -[- z(s) sW(s)

+ s;X(s)OW(s) + h(S)s,W(s)

and

(essW(s), W(s))s (-es[((s))]((s))(A(s) W(s)), W(s))s

+ (A(s). sW(s), W(S))s

+ (Os(S)O,W(), W())s + ((S)s,W(s), W(S))s

=. 7 + %+ 73+ 7.

We begin with 7:

ITl < (s)lld(s). W(s)llsllW(s)lls.

Then

T6 (d(s) OsW(s), w()),

(t3sW(s),A(s). W(s)) (by Proposition 3.4)

-lid(s). W(s)lls2 + (](s)ttW(s),d(s)" W(S))s

lid(s). W(s)ll + (h(s)(v(s))(d(s). W(s)),d(s). W(s)),

lid(s). W(s)lift (s)lid(s). W(s)lift

2lid(s). W(s)ll,

if s is chosen large enough. Next

I1 < i(Osh(S)((s))(A(s) W(s)), W(S))sl

< e(s)IIA(s) W(s)Ilsll W(s)Iis.
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We are left with 7. Putting

(, t) :=

0 0 0 0

0 A(s, t) 0 0

0 A22(s, A12(s, t) 0

0 ml,,P(S t) mp_l,P(S t) AI,/,(S t)

we see that

($)OstW(s) (S)tW(s) (S)f/I(v(S))(Z(S) W(s)). (11)

Remark. It is not a mistake that the derivative ’+1 seems to disappear in
the above equation. The reason for this "miracle" is simply that 3’+1( is not even
contained in the left-hand side of (11); see also the remark after equation (9).

Therefore

I1 < I(A,(s,. )s,W(s), W(s))l

(s)ll(s) W(s)llllW(s)lls.

Summarizing, we finally get

1
0"(s) ll(s)- W(s)lls -(s)ll(s). W(s)llsllW(s)lls

-II(s).W(s) IIs ( II(s). W(s)IIs- (s)II W(s)

(-(s))ll(s).W(s)llllW(s)ll,
by Proposition 3.4. The term in the bracket is always larger than /4 if s is suffi-
ciently large; hence

2
o"(s) > --II W(s)It z -(s) (12)

using Proposition 3.4 again. Because we can estimate II. IIs from above by the
ordinary L:-norm and IriseS(s, .)l 0 in C([0, T],R:) as s c, we conclude
that

O<g(s)-,O as s -- O.
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Then (12) implies

g(s) < g(so)e-(’V)(-) for all s > so (13)

if so is chosen large enough. Inequality (13) implies that for some suitable so and
each k e N, there is a constant Ck > 0 so that

IlO(s)ll, Cke-rs V$ SO, (14)

where r fi/x/-.
We estimate with suitable c > O, 0 < e(s) 0 using (10):

IIO, W(s)lls IIff(s). W(s)lls

IlOsW(s)lls + IIh(s)W(s)lls

ce-rS %- e(s)llO, W(s)lls.

Hence

IlO,OsC(s)ll,.= ce-s for s > so

with some constants c and k > 0. Using Ot((s,t)= M(v(s,t))?s((S,t), we com-
pute for k, m > 1,

k m

(k)(m)Okt_nt7_lM(1)(S,t)). g3o+l(s,)0tk+lsmC(s t) ZZ n
n=0 /=0

Inductively, we get estimates

II0C(s)ll, < ce-rs for s > So,

where a (al, 2) e N2 and c3a (O/c3s)’ (O/c3t)2.
embedding theorem, we obtain, finally,

Applying the Sobolev

[C3a’(S)[co([0,r],li2) < ce-rs Vs > So.

We use this estimate now to derive also exponential decay estimates for
(z(s, t) t) and (b(s, t) bo s), which completes the proof of our theorem.
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Let us study equations (1) and (2) now:

1
0 Osb ---7..OtZ Cl(V)OtX C2(V)Oty,

jkv)

0 =f(v)Otb + OsZ +f(v)cl(V)OsX +f(v)c2(v)Osy.

Recalling that f(0, 0, z) 1, we may write

f(v(s,t)) 1 + df(a(s,t),z(s,t)) .(s,t)da=: 1 + Fl(s,t)- ((s,t)

and

f(v(s,t))
1 + (f(af(s, t), z(s, t))) -2 df(af(s, t), z(s, t)). ((s, t) da

1 + F2(s, t). (s, t).

We obtain the following equation:

Osw + JoOtw h,

where

(w,,s,,, ) _s)w2(s, t)
=:

z(s, t) t

o -oHere Jo (+x and

Otz(F2. () -b- Cl (v)Otx if- c2(v)Oty ) (s, t).h(s, t) "=
-Otb(Fx ) (1 + FI" ()[Cl(V)f(v)Osx + c2(v)f(v)Osy]

We know already that there are constants so R; d, r > 0 so that

I(s,. )Ico([o,r]), lOff(s,. )Ico([o,r]), lOre(s,. [co([o,r]) <

if s > so, while the other expressions involved in the definition of h remain
bounded if s . Hence

Ih(s, )[CO([0,T],Rz) ce-rs

if s > so, where c > 0 is a suitable constant. By the same reasoning, all deriva-
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tives Oh of h also satisfy an estimate as above with some constant c > 0
depending on .
We fix some number l’ N and introduce the column vectors

V B + iZ (Wl -+- iw2, OsWl -2r- iOsW2,..., O’w1 -+- iOs w2),

H "= (h, Osh,..., O]’h).

Then

OsV + OtV H,

where diag(J0,..., Jo), and H satisfies

IO’H(s)lco<io, rl> < C,l,e
-rs

for s > so, where N2 is some multi-index and C,I’ > 0 is a constant.
Moreover, we have the following boundary condition:

Z(s, 0) Z(s, r) o.

Writing H H1 + ill2, we obtain

OsB- OtZ H1

and

IT IOsB(s,t)dt H(s,t)dt,
0 0

hence

rOsB(s,t)dt

0
< ce-rs.

We estimate

B(s2, t) dt B(s1, t) dt
0 0 Ir OsB(a, t) dt da

0

(15)

c
-(e-rsl _e-rS2).
r
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Hence .B(s,t)dt Bo for a suitable B0R/’+1 as s o. Considering
B(s,t)-(Bo/T) instead of B(s,t), we may assume that the mean value

B(s, t)dt of B converges to zero for s oo.
Taking the limit s2 c in (15), we get

n(s, t) dt < r

We define now

B(s,t) dt(, t) := V(s, t) ? o

B(s, t) dt + iZ(s, t).n(s, t) - o

If we succeed in getting exponential decay estimates for V, then we also have
them for V since the mean value of the real part B decays already exponentially,
as we saw above.
V satisfies the differential equation

1_Tt

J H1 dt + ill2 H1 + ill2 =" H,sV + tV H1 - o

where H still decays like e-rs. The real part B of V has mean value zero with
respect to t, and the imaginary part vanishes on [so, oo) x {0, T}.
We begin with the following lemma.

LEMMA 3.5. Assume v: [so, oo) x [0, T] -- C2v R2N is bounded and solves
(a) C3sV + dry H

with
(b) In(s)lco([O,T]) < ce-rs (r, c > 0)

and
(c) gtv(s, 0 in C([0, T]) as s oo.

If v Vl + v2, wefurther assume
(d) ro Vl (S, t) dt= O,
(e) vz(s, O) vz(s, T) O.

Then

e2psllv(s)ll2v ds e2pSll,v(s)ll2v ds < (16)

for all 0 < p < min{r/2, l/T).
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Proof We have the following simple pointwise identities for a function
f C C (identifying C with R2 via z s + it - (s, t)):

(1) d/ds(f ittf) d/dt(f lOsf) 2(t3sf, it3tf),
(2) Idf + ittf[ 2 Idf[2

/ [tfl2
/ 2(df, ittf).

First, we show that s I[v(s)l[:([o,r] is in L2([so, )). We take

Vl (s, t) Vl (s, t’) ttl)l (s, "t’)

and integrate with respect to t’:

tVl (s, z) dr dt’.Vl(S, t) - 0 t’

This implies

[dtVl(S,z)l&dt’[Vl(S,t)l - o

T

IotVl(S,t)l&
0

On the other hand,

,,2(s, t) o,,,2(s, ) d,

hence

T

I=(s, t)l < Iotv2(s, t)l dt < Zl/211Otv2(s)ll=,
0

and therefore

IIv(s)ll2= -Ilvl(s)ll= + IIv=(s)ll < (17)
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We estimate

I IiIIv(s’)llL2= T2 II0v(s’)ll2L ds’

< T2 (llOtv(s’)ll2L + IlOs(s’)ll)as’

T2 IIn(s’)ll2L ds’

2T2 (Gv(s’), iO,v(s’))c ds’

T2 IIH(s’)II2L ds’

LIT
T2 d

(v(s’, t) i3tv(st, t)) dt
0 -t

+ T2 d

o
<v(s’, t), iOsV(S’, t) ) dt as’

T2 Iln(s’)ll2L ds’+ T2(v(So),ic3tV(SO))L

T2(v(s), iOtv(S))L2.

We have used

T d

o
<v(s’, t), iOsV(S’, t) > dt <v(s’, T), iOsV(S’, T)> (v(s’, 0), iOsV(S’, O)>.

The right-hand side is equal to zero because we know

OsVl[s0,oo){0,r} RN c CN in view of the boundary condition. Finally,
that

I(v(s), iOtv(s))L21 < const. IItt)(s)llL2 0

as s o, so we get in the limit s

IIv(s)II2L as < T2 IIn(s)ll2L= d$ -t- T2(v($o), i3tV(SO))L2 < .
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For n > so, we pick functions Yn" [0, ) - [0, ) with

7(s) s for 0 < s < n,

yn(s) const

O<),’,,(s) < 1

,.(s) / s.

fors> n+ 1,

for all0<s<asnc,

Define

Vn(S, t) ePrn(S)v(s, t).

Then also [Iv(s)ll L2([s0, o)), tvn(s, t) -- 0 as s o uniformly in t, the real
part of v has mean value zero, and the imaginary part vanishes on
[so, ) x {0, T}.
We compute

3sVn + i3tVn pnePrnv + ePr, dsv + iePrdtv

PTtnVn + epr- H.

As before, we can estimate

IIv(s)ll2= ds T2 IItv,(s)ll2L ds

< T2 Ilpg,(s)v,,(s) + ePr’(S)H(s)ll2L ds

+ T2(v,(so), iOtV,,(SO))L

T2 p2(g,(s))211v,,(s)ll2L= ds

+ T2 e2P’"(s)lln(s)ll2L ds

+ T2 pn(s)e2Pr(S)(v(s),H(S))L as

+ T2e2p’"(s) (v(so), itV(SO))L2.
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Recalling that IlH(s)]]2 < 2Te-2rs, We obtain

II(s)ll2 ds T2 I]Otvn(s)ll2L2 as

< T2p2 II(s)ll2 ds + c2T e2C-r)s ds

+ TS/2p e(2p-r)s ds + T2e2pS(v(so), itv(so))L2,

and therefore

I[on(s)l[2 ds T2 IlOtvn(s)ll2zz ds

< T2p2 Ilo(s)l12 ds + M,

with some number M > 0 not depending on n. Since p < T-1, this implies

MIlv(s)ll2 ds
1 T2p2 <00

and

IIv(s)ll2= ds T2 I[tv,,(s)ll2L ds
so

1 + T2p2

1- T2p2

In the limit as n , we finally get

eZpsllv(s)ll= ds < 72 e=’=lldtv(s)ll= ds <

which completes the proof of Lemma 3.5.

Applying this to V, we find

e2psll(s)ll2 ds r2 e2pSll,(s)ll2 ds <
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whenever 0 < p < min{T-l,r/2}. Now we want to show that for each g > 0,
there is a sequence Sk - with Sk+l -sk < so that eps V(sk, t) converges to
zero as k uniformly in t. Pick g > 0 and define the following intervals for
k>l"

Ik :-- SO + t(k- 1),s0 d-k
Then

e2pSll (s) ll2 ds and e2pll8(s)ll2 ds

must converge to zero as k in view of

e2p’ll,(s)ll e2p
k=l Ik so

and

e2pll(s)ll 2 TEII e2psL2 ds < II,(s)ll ds.
Ik

Recall that [(S)lc0([0,r] converges to zero as s , so IlV(s)llr.2([0,r]) depends
continuously on s. If we take

Sk min(e2Pll(s)ll)
SIk

then Sk --+ oo, Sk+ Sk t, and, in view of (17),

e2all(sk)ll2 < T2 e2alld,(sk)ll2

T2 II e2ps

ask --,

The Sobolev embedding theorem provides an estimate
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with some constant c > 0 not depending on k. Hence

e2s[(S)[Co([O,T]) --+ 0

as k- .
If we split V into real part B and imaginary part Z, we have

k-- oo
ePSlZ(sk)lco([o,T] O.

Then the differential equation for V is

OrB + OsZ H2,

Z(s, O) Z(s, T) =- O,

which implies AZ Os2- Otl =: /, where [/_it[ decays like const, e-rs as

Define now

p(s, t) eaZ(s, t).

Then

Ap(s, t) epsAz(s, t) + 2pOsg(S, t) po(s, t)

epsI2I(s, t) + 2pOsq(s, t) p2o(s, t).

We compute with (s, t) := Io(s, t)12:

AS(s, t) 2lOsq(s, t)l2 + 216o(s, 012 + 2(9(s, t), Ao(s, t))

2lsCO(s,t)l2 + 2lOt(s,t)l2 + 2e2eS(Z(s,t),f-I(s,t))

+ 2pQo(s, t), Osrp(s, t)) 2p2,(s, t).

Hence

A + 2p2qt 210s12-2ce(2p-’Os- 2ploll0sol

> 2}OsOl2-2ce(2p-) p21o12-10sOl2
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and

A@ + 3p2 > 2ce(2p-r)s f(s).

Note that f(s)--.O as so since p<r/2. Recall that ff>0, q(s,0)=
q(s, T)= 0, and /(Sk, t)- 0 uniformly in for some sequence sk o with

Sk+l sk < , where 6 > 0 can be chosen arbitrarily small.
Let k := [sk, sk+l] [0, T]. Our aim is to derive a bound fflnk < C that does

not depend on k, and is therefore valid for the whole strip [so, o) [0, T].
Unfortunately, the maximum principle cannot be applied directly because 3,02
has the wrong sign. However, there are still bounds if Ok is sufficiently slim, that
is, if 6 is chosen sufficiently small.

Define on k,

Vk(S, t) sup + (e6 eS-Sk (3p2 supok
+ 2ce(ZP-r)s) > 0

since q > 0 and s Sk Sk+ Sk t. We have

Avk(s, t) --eS-Sk (3p2 sup +

< 3#2 sup q 2ce(2p-r)

and

A(vk- )< 3p2( supq)ok +2c(e(2p-")-e(2p-")s)

On the boundary O’)k, we have

Ok- q supk--0Ok [0Ok + (e6-eS-Sk)(3p2sup+2ce(2p-r)s)ok
>0.

By the weak maximum principle (see [3]), we conclude

f(Vk if) inf(vkook ’) > 0
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and therefore

(s, t)< sup ff+0nk (ea -eS-Sk)(3p2sup+2ce(ZP-r)s)’n
which implies, by taking the supremum on both sides,

sup ff < sup+n0ta (ea- 1)(3p2sup+2ce(2p-r)s)"nk

If we choose now 6 < log(1 + 1/3p2), then

)sup ff + 2c(e’ 1)e(2’-)ssup p < 7
’k 0’k

with C 1- 3p2(ea- 1) > 0.
In view of the boundary condition on ffltak, we see that lta is bounded by a

constant c that does not depend on k, hence

sup ePSlZ(s, t)[ < c < .
(s,t) [so, o)[o, r]

Since the integer l’ involved in the definition of Z (w2, OsW2,... O’W2) was
arbitrary, we also have a bound for eaSlOsZ(s,t)l. Because of OtB(s,t)=
Hz(s, t) OsZ(s, t), we can estimate

IOtB(s, t)] < ce-as.

Consider now

(s, t) (s, t’) Ot(s, ) dr.

Integrating over [0, T] with respect to t’ and using the fact that/ has mean value
zero, we arrive at

which implies

B(s, t) Ot(s, ) dz
0

IB(s, t)l < IO,B(s, r,)l d at’ < cT2e-ps

0 0
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Combining this with the estimate on the mean value of B, we have shown that
[B(s, t)[ < const, e-ps.
Summarizing, we have shown exponential decay as s for 0kw, where

k > 0 and w(s, t) (b(s, t) s- b0, z(s, t) t) with some suitable real constant
b0. Recalling that dtV (dsV- H), we also obtain exponential decay estimates
for dtV, which implies estimates for each 8tdkw (k > 0). Inductively, we get,
finally, exponential decay of 0V for each > 0, which proves Theorem 3.3. [

3.3. A representation formula. We recall from the preceding section that the
equation for the finite energy strip

b (b,v) (b; (, z) [so, o) x [0, T] -- R x R2 x R

looks as follows:
Osb ,2(t))Ott) 0
3tb "-k 2(V)OsV 0
Os( + M((, z)Ot( O,

provided so is sufficiently large. Moreover, we have shown that v(s, converges
to the characteristic chord xo(t) (0, 0, t) in C([0, T],R3) as s , and the
convergence is of exponential nature.
The map v satisfies the boundary conditions

v(s, O) R. (1, 0, O)

v(s, T) R (0, 1, O) + (0, O, T),

and the matrix-valued function M satisfies

0 -1)MTjoM Jo with Jo-
+1 0

=:i

and

-JoM >0.

In this section, we want to derive an asymptotic formula for the component (
of v transversal to the characteristic chord x0. We define an unbounded linear
operator

A" L2([0, T],R2) W’2([0, T],R2) -- L2([0, T],R2)

by

(Ao ’)(t) -M(t)(t),
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where we abbreviate M(t):= M(0,0, t). Our main result is the following
theorem.

TI-mOREM 3.6.
totic formula:

If ( does not vanish identically, we have the following asymp-

(s, t) e ()[e(t) + r(s, t)],

where
e e wrl’2([0, T],R2) is an ei#envector ofAo correspondin# to some ei#envalue
2 <0 (here L2([0, T],R2) with the equivalent inner product (., .)--
0r (.,-JoM(t).> dt), and A is selfadjoint;
: [so, ) ---, R is a smooth function satisfying (s) --, 2 as s ;
r [s0, ) [0, T] -- R2 is a smooth map with

Ir(s, t)l 0

as s --. oo uniformly in and N2 is some multi-index (recall that by con-

vention 0 N).

The proof of this theorem occupies the rest of this section. We consider again
the following inner products on L2([0, T], R2):

(u, V)s := (u(t), -JoM((s, t),z(s, t))v(t)) dtl

The corresponding norms are denoted by [1. I[s, while we use the subscript L2 for
the ordinary L2-norm (or inner product). We saw earlier that these norms are
indeed equivalent to the ordinary L2-norm, and we even have an estimate

with a positive constant C not depending on s. In this section, it is useful
to view smooth maps " [so, ) x [0, T] R2 as sections in the trivial vector
bundle E := ([so, ) [0, T]) x R2 over [so, ) [0, T] and the family (s, t) -(.,-JoM(((s, t),z(s, t)). as a bundle metric. In contrast to [7], we cannot use

0 -1a bundle isomorphism E E that transforms M(v(s, t)) into Jo (+1 )
since this would destroy the boundary condition. So we have to follow a more
intrinsic approach. We choose a connection on E by introducing the following
covariant derivatives:

1
M(v(s, t))c[M(v(s, t))]. ((s, t),Vs,(S, t) 3s((S, t) -1 M(v(s, t))Ot[M(v(s, t))]. ((s, t)Vt((s, t) Ot((s, t)
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We abbreviate

and

1
Fl(S, t):=--M(v(s,t))c3[M(v(s,t))]

1
F2(s, t) -M(v(s, t))ct[M(v(s, t))].

For vector fields X 0l(/s + :(d/dt), where 01,02 are smooth real-valued
functions on [so, o) [0, T], we define Vx := OlVs + o2Vt and observe that

VX((1 -[-(2) Vx(1 -[- Vx(2,
Vx(f() X(f). +f Vx.

We compute for Ul,U2 W1’2([$0, o0) X [0, T],R2) with V being understood in
the weak sense:

d
(Ul u2)s (gqsUl, u2) -[- (Ul, su2)s q- (u (t) -Jocgs[M(v(s, t))]u2(t)> atds

(c,[Mr (v(s, t))]JOUl(t), u2(t)> dt(Ul, VsU2)s q- (6sUl, U2)s q- - 0

1J
r
(-JOCgs[M(v(s, t))]Ul (t), u2(t)> dt(Ul, gsU2)s + (sUl, U2)s +- 0

(Ul, VsU2)s q- (VsUl, lg2)s.

If B is a section in the endomorphism bundle End(E)= ([so, o) [0, T])
End(R2), then we can define a covariant derivative VB by

lIB-M(v)t3s(M(v)) M(v)C s(M(v)) B],V,B , sB +

so that Vs(B.)=VB.+B.Vs. We note that VsM(v)-O
OtV(s, t) Vc3t(s, t) c3tF1 (s, t) (s, t). We need the following result.

and

TI-mOREM 3.7. Let T" H = D(T) - H be a selfadjoint operator in a Hilbert
space H, and let Ao H -- H be a linear, bounded, and symmetric operator. Then
the following holds:

dist(a(T),a(T + Ao))

f
:= max{ sup dist(, a(T + Ao)),

(Xa(T)
sup dist(2, a(T))

2a(T+Ao)
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assume further that the resolvent (T- ,,o) -1 of T exists and is compact for
some 20 a(T).

Then (T-2)-1 is compact for every , a(T), and a(T) consists of isolated
eigenvalues {#k}kZ with finite multiplicities

If we assume that supkz mk < M < m and that for each L > 0 there is a num-
ber mr(L)e N so that every interval I R of length L contains at most mr(L)
points of a(T) (counted with multiplicity), then for each L > 0 there is also a
number mr+Ao (L) s N so that every interval I R of length L contains at most

mr+Ao (L) points ofa(T + Ao).

Proof. It is sufficient to prove that

sup dist(2, a(T)) < I[Aol[e(m,
2etr(T+Ao)

because T + Ao is also selfadjoint. We pick with dist(2, a(T)) > [IAoll.z(m, and
we want to show that 2 a(T + A0).
We write

T + Ao 2 lid + Ao(T- 2)-1](T- 2).

This is invertible with bounded inverse if and only if (Id + Ao(T- 2) -1)-1 exists
and is in L(n). If Ilao(r- A)-l[le(n) < 1, then the Neumann series

Id + E(Ao(T- 2)-1)k

k=l

converges in (H) to an inverse of Id + Ao(T- )-1. But

Ilao(T- )-11](/) IIa011.(mll(Z- )-111(/)
1

IIAll(n) dist(2, a(T))

<1

since T is selfadjoint, which proves the first part of the theorem. By the spectral
mapping theorem, the function

R\{o} R

1
2 20
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maps a(T) onto o’((T-20)-l). Since the resolvent (T-20)-1 is compact,
a((T- 20) -1) is a countable set with no accumulation points different from zero.
Moreover, each nonzero 2 a((T-20)-1) is an eigenvalue of (T-20)-1 with
finite multiplicity (see [11, III, 6.7, Theorem 6.29]). It follows that the spectrum of
T is a countable set {/Zk}ke z of isolated points and that each tk a(T) is an eigen-
value of T with the same multiplicity as (/k 20) -1 a((T- 20)-1). We assume
further that all the multiplicities of the eigenvalues /tk are bounded by some
positive constant M. We consider the following family of selfadjoint operators:

T(x)’=T+xAo, xe[-e,l+e], e>0.

We use the following theorem (for a proof, see [11, VII, 3.5., Theorem 3.9]).

THEOREM 3.8. Let T(x) H D D --. H be a holomorphic family of selfadjoint
operators in a Hilbert space H with domain of definition D so that each T(c) has a
compact resolvent (x [-e, 1 + el).

Then there are analytic functions/tn: [0, 1]-- R and Pn: [0, 1]--* H for each
n Z so that ltn(X represent the repeated eigenvalues of T(x) and the On(X form
a complete orthonormalfamily of the associated eigenvectors of T(x).

Remark. The term "holomorphic family" above means that for each u D,
we can expand T(x)u in a convergent Taylor series so that the convergence
radius does not depend on u.
We can apply the above theorem since all the operators T(x) have compact

resolvent. Using the selfadjointness of T(x) and (n(x), tp,(x)) 1, we see that

/n(x) (T(x)fp(x), q(x))

and

l’n(x) (Aoqn(x), (n(X)) + 2(T(x)q(x), q(x))

(Ao,(x), qn(x)).

Hence

and therefore

Now let I [a, b] c R be any interval of length L. Then
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mr+,4o(L) := I{n Z I,u.(1) I}l

I{n Z (0) I’}l

mT(L + 2

where I’= [a- IIa0llzem, b + [IAol[.(/)]. This completes the proof of Theorem
3.7.

LEMMA 3.9. If ( does not vanish identically, then we have for s > so,

II((s)lls ef <>llC(so)lls0,

where : [so, ) R is a smooth function satisfying (s) --, 2 < 0 as s -- with
2 being an eioenvalue ofA.

Proof It is a quite trivial matter to get the required formula. We just write
down the correct . The difficulty is deriving the properties of as stated in the
lemma.

Let us first assume that II((s)lls 0 for all s > so. The case where II((s)lls 0
for some s is treated later (this actually implies ( _= 0). Define

(d/ds)llC(s)[12

Then II(s)ll 2 satisfies the differential equation

d 2 2

d lIar(s) IIs 2(s) II(s)IIs

by definition. But the same differential equation is also solved by

e2s ()d 2F(s) := II(s0)ll,

which implies F(s) II(s)ll2s
We introduce now

(s, t) :=
(s, t)
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We have

(3t(S, t) Ot(s,t)

and

c3s(s, t) as((S, t) ((s, t) d 2

II((s)II--- 2[I((s)I1 ds
IlC(s)

so that

0 Vs,(S, t) + M((s, t), z(s, t)) dt(s, t)

F1 (s, t). (s, t) 4- a(s) (s, t). (18)

Differentiating II(s)ll2 1, we obtain

(Vs(S), (s)): o.

Taking the L2-product with (s), we derive the following from equation (18):

o(s) (-M(v(s))dt(s), (s)) + (F1 (s)- (s), (s))s.

We conclude that

’(s) (-Vs[M((s)),(s)], (S))s + (-M((s)),(s), Vs(S)),

+ (V[Fl(s)(s)],(s)) + (Fl(S)(s), V(s))

(-M(v(s))OV,(s), (S))s + (M(v(s)),r (s)(s), (s))

+ (A(s). (s), V,(S))s + ([Vr (s)](), (s))

+ 2 (Fl(S)(s), V(s))

2 (A(s). (s), Vs(S)) + 2 (Fl(S)(s), V(s))

+ (M(v(s))OtFl(s)(s), (s)) + ((VsFl(S))(s), (s)).

Inserting

A(s) (s) z(s)(s) + V(s) F (s)(s),
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we obtain

’(s) 2 IIV(s)ll 2 + (M(v(s))OtFl(s)(s) (s)) + ([VFl(s)](s), (s))

> 2 II%(s)ll2 (s), (19)

where 0 < e(s) 0 as s o because [Otrl(s,t)[ and IVrx(s,t)l converge to
zero uniformly in for s o.
Assume now that 0 is not bounded from above. Then we find a sequence

Sk o with ot(Sk) o. If we had (s) > r/for some r/> 0 and all large s, then

1 1 e,(s_so s-,oo

which is wrong by the convergence result, Theorem 3.1. Hence for each /> 0,
we can find a sequence s o with (s,)< 0. Pick now r/< fi with fi as in
Proposition 3.4, and we may assume that (Sk) > r/. Now let gk be the smallest
number satisfying gk > sk and (gk) r/.
Then r/ cannot be an eigenvalue of any A(s) since, by Proposition 3.4,

Ila(s)- ll > IIa(s)ll- 1111 > 0 for every 0 q: y e W;’2([0, T], R2). We con-
clude that

IIV(gk)ll [Ia(gk)" (gk) (gk)ll [IFl(gk)"

for some z > 0 since Ir(s, t)l 0 as s o uniformly in and IIC(k)IIL C for
all k. Inserting this into the estimate (19), and choosing k so large that e(gk) < r2,
we obtain

()ot’(gk) > 2 IlV(gk)ll

(20)

Summarizing, we have

,(s) > ,

(s) > r/ for all s [Sk, k),
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but (20) implies (s) < q for s < gk close to gk, which is a contradiction; hence is
bounded from above.

Let us show now that is also bounded from below. For this, we need some
information about the spectrum of the operators

A() + r(). ([0, T],R) = W’([0, T],R) ([0, ], R2),

((A(s) + rl(s)) )(t) -M(v(s,t))Ot(s,t) + Fl(s,t) (s,t).

Let us investigate A(s) first.
Define the matrices

T(s, ) := (-Jo((s, )))/,

Too(t) := (-Jo(t))/.

Then T and To are symmetric and symplectic since this applies to -JoM.
Therefore

T(s, t)M(v(s, t)) JoT(s, t)

and, similarly,

Too (t)Moo (t) =JoTs(t).

A straightforward calculation shows that the maps

Os" (L2([0, T], R2), (.,.)s) - (L2([0, T], R2), (’,")L:)

), -} T(s, ),

" (L2([0, TI,R2), (-,’)) (L2([0, T],R2), (’,’)L)

r Wo(.)r

are isometries. They map WFI’2([0, T],R2) onto

rs ([0, T], R2) ), W’2([0, T], R2) 7(0) R T(s, 0)-(1, 0)
),(r) R T(s, r)-(0, 1)

and

r ([0, T],R2) := ), W’2([0, T], R2) ,(0) R. To (0). (1, 0) "),(T) e R Too(T). (0, 1) f’
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respectively. We consider the operators

W, 1’2 R2
__
L2A(s). ([0, T],R) = r ([0, 7"] ([0,

.(s) s o A(s) o ;1,

W,1’2 ,R2
_
L2A-([0, 7"] R) = r ([0, 7"] ([0,

oo @m o Aoo o (I)o1,

where we equip L2([0, T],R2) with the ordinary L2-inner product (., .)L2.
Unitary equivalent selfadjoint operators have the same spectrum; hence

o-(i(s)) ,,(A(s))

and

cr(Am) a(A).

It remains to investigate the spectra of (s) and Am. First we note that
the operators (s) and Am are selfadjoint. We compute as follows for

W,1,2 2)r ([0, r],

(fi(s) ),)(t) -Jo#(t) + JoctT(s, t)T(s, t)-l(t)

="-Jo(t) + S(s, t)),(t).

W,1,2We obtain in the same way, for r ([0, T], R2),

(Am"))(t) -Jo)(t) + Jom (t) Tm (t)-l)(t)

="-Jo(t) + So(t)?(t).

Moreover, since T is symmetric,

S(s)" L2([0, T], R2) -- L2([0, T], R2)

(S(s) )(t) S(s, t)?(t)

is a linear, bounded, and symmetric operator, which is also the case for
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Because v(s, t) --, (0, O, t) in C([0, T], R3), we have

IIS S(S) II.(L2([O,T],R2)) 0

as s . It is still unpleasant that the operators o and (s) all have different
domains of definition. Let us get rid of this problem.
For each s, we choose a smooth path

Bs: [0, T] --, SO(2) 0(2)c Sp(2)

with
Bs(O) T(s, 0). (1, O) R- To (0). (1,0),
Bs(T) T(s, T). (0, 1) e R. To(T). (0, 1),
Bs(t) --, Id as s --, uniformly in t.

Then we get isometries

Vs: L2([0, T],R2) -- L2([0, T],R2)

(tFs)(t) := Bs(t)(t),

mapping W, 1,2 ([0 T] R2 W,1,2
rs t onto ro ([0, T],RE). The operators

(S) := tI o ($) o tI/-I

are also selfadjoint with domain of definition W, 1’2
F ([0, T],R2), and they satisfy

W,1,2 ,R2a(Ji(s)) a(A(s)). We compute for y e r ([0, T] )"

((s)- y)(t) (o" 7)(t) + A(s, t)y(t),

where

A(s, t) [Bs(t)S(s, t)Bs(t) r So(t)] + Jos(t)Bs(t) r

is a symmetric perturbation ofo with

IA(s, t)[ 0

as s c uniformly in t.
Let us compute now the spectrum of the operator -Jo(d/dt) with domain of

definition W,1’2([0 T] R2 R2
too tt ). Identifying with C, we write

R. T (0). (1, 0) Rei’,

R. To(T). (0, 1) Rei:.
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Then we have to consider the operator -i(d/dt) acting on paths 7: [0, T] - C
that satisfy the boundary condition

7(0) Reiql

,( T Reiq2

The eigenvalues of-i(d/dt) are then given by

(1 (P2 kz
ilk-- T T

with k e Z, and the corresponding eigenfunctions are

k(t) a. ei(pkt+*), a R;

and so the eigenvalues all have multiplicity 1. Moreover, the resolvent is compact.
So we have also shown that the spectrum of-Jo(d/dt) with domain of defini-

tion W, 1,2
roo ([0, T],R2) consists only of the eigenvalues {flk}keZ that all have

multiplicity 1, and the distance of two neighbouring eigenvalues equals z/T.
Then by Theorem 3.7, we find for all L > 0 some m N so that every interval
I
_
R of length L contains at most m points of the spectrum of A. Moreover,

dist(a(A), a(A(s))) - 0 (21)

ass- .
Define now the intervals

I,:=[-(n+l)L,-nL], n e N.

Then each In contains at most m points of a(A), so there is a dosed subinterval
Jn c In of length L/(m / 1) that does not contain any point of a(A). Because
of (21), there is a closed interval J’n - Jn - In of length L/2(m 4- 1) that does not
contain any point of a(A(s)) whenever s > Sl where Sl is sufficiently large (this Sl
does not depend on n).

So we found a sequence rn - -c and a positive constant d’, so that

[rn d’, rn + d’] c a(A(s)) 0

for all large s. Replacing d’ by a smaller constant d, we still have

[rn d, rn + d] a(A(s) + Fl(s)) 0

for all large s.
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Recall the differential equation for :
(A(s) + Fl(S))" (s) (s). (s) V,(s).

If were not to be bounded from below, then we could find a sequence sn -with (sn) r, and o’(s,,) < 0. Since A + F1 is selfadjoint, we have the following
for any 0 in the resolvent set:

(a(s) + Fx (s) 0. Id) -111 dist(O, a(A(s) + 1 (S)))

We estimate

1 II(s)ll -II(a(s) + Fl(S,) r,-Id)-V(s,)ll,.

< dist(r,,a(A(s.) +

1

and therefore

for some suitable z > 0 and all n N. Using the estimate (18) for ’(s), we con-
clude that

O{t(Sn) >. "C
2 > 0

if n is large enough. This is in contradiction to our assumption, so a is also
bounded from below.

There exists a sequence Sk so that IIVA(sk)ll, --" 0. Otherwise, we have
for all large s,

IlVs(s)ll > o

with some suitable r/. But then because of (18),

at(s) /,]2 > 0

for s > $1 (Sl sufficiently large) and

(s) > 2(s- s) + (s)

so that IlC(s)ll as s , which is not true.
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Because is bounded, we can find a subsequence (which we also denote by
(Sk)kr) so that

lim (Sk)
k-o

exists. We claim that 2tr(Ao). If we had 2tr(A),
inf#(a)[2 Pl > 0 because tr(A) is closed, and therefore

then e :=

I/’- 21 > e- [/t-/’l V/t + tr(A), lu’ + tr(A(s) + Fl(S)).

This implies

dist(2, a(A(s) + Fl(S))) > e- sup dist(p’,a(A)) > e/2
u,(A(s))

if s is sufficiently large, by Theorem 3.7; that is,

(Sk) tr(A(sk) + Fl(Sk))

for k sufficiently large.
Then

4
IIVA(sk)l[ > dist(a(Sk),a(A(sk)+ rl(Sk)))-llVs(Sk)ll

> [[(A(sk) + Fl(Sk)- a(Sk)Id)-Vs(Sk)l]s,

II(s)lls

where k is chosen so large that 12-(Sk)] < e/4. But this contradicts

IlVs(Sk)lls,, O, hence 2 e tr(Ao). Let us show that indeed

lim e(s) 2.

Take now an arbitrary sequence s - . Then there is a subsequence that we
denote again by (s) so that (s) converges to some lu, and we have to show that

# 2. Assume that p < . It is a consequence of Theorem 3.7 that there are
d > 0 and v (/, 2) so that

v a(A(s) + Fl(s))
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and

dist(v,t(A(s) + Fl(S))) > d

whenever s is sufficiently large.
Let g be any number with (g) v. Then we estimate as before

1
IIvA(g)ll, dist(v,a(A(g) + rl(g)))-lllv(g)ll 1

and

’() > d: > o,

where g is large, which implies (s) > v for s sufficiently large in contradiction to

,(s) --, , < v.
In the case p > 2, we also get ’(g) > d2 > 0 for all large g satisfying (g)

v (2,/z) (v, d having the same properties as before), which would imply (s) > v
in contradiction to (Sk) 2 < v.
Hence we have shown that (s) converges to 2ea(A) as s . The

number 2 is actually an eigenvalue because (Ao-/z)-x is a compact operator
whenever lu tr(A). We must have 2 < 0 since otherwise we would have
IlC(s)ll,= as s . Because the spectrum of A consists of eigenvalues
only and in view of the nondegeneracy assumption we have 0 tr(Ao), and
therefore 2 < 0.
So we have settled the case for which II((s)ll,.= 0 for all s > so. Assume now

that II(s*)[I,= 0 for some s* > so. Then ((s*, t*)= 0 for all t* e [0, T]. Using
the generalized similarity principle (see [10] or [1]), we find an open neighbour-
hood U for each (s*, t*) so that ([v is represented by

((s, t) O(s, t)h(s, t),

where " U GLib(C) is continuous and h- U C is a holomorphic function.
Because (s*, t*) is a cluster point of zeroes, we conclude that (Iv 0 and con-
sequently ((s, t) 0 for all s > so. This finally completes the proof of Lemma 3.9.

LEMMA 3.10. For every fl (fix,fl2) N2 and j N, we have

sup
(s,t) [o, o)[o,7"]

sup
so <s<
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where (s, t) ((s, t)/ll (s)lls and t(s) (A(s) (s) + Fl(S) (s), (s)), (recall
that 0 N by convention).

Proof. Recall that solves the following equation:

t) t) (22)

Moreover, for any k > 0,

Cs(s, T) iR.

We show the following. For each N s N*(N > 1I),2 < p < oz there are
fin, Cn,, > 0 and sr > so so that

I[]lw,,’(ts*-a,s*/a][O,T],R=) CN,p

whenever s*> Sv. The constant C,p does not depend on s*. By the Sobolev
embedding theorem, we obtain

where Q-N Q(s*,aN)"= [s* --aN, S* +fiN] X [0, T] and CN,, > 0 does not
depend on s* > sv. But then

f
sup IO(s, t)l < max{ sup

(s,t) [so, oo) x [0, T] ( (s,t) [s0,sv] x [0, T]

if ]fl[<N-1. Take 6o>0 and define a sequence j(1/2)60 by 6j:=
(1/2)60(1 + Z-J). Let flj" R - [0, 1] be a smooth function that vanishes outside
(s* 6j-1, s* + 6j-1) and equals 1 on Is* 6j, s* + 6j].
We define the column vector

W(s, t) ((s, t), gs(S, t),..., y-l(s, t)).

If F’[so, o) x [0, T] + CN is a smooth function with F(s, O) e V1,F(s, T) e V2,
where V1, V2 are totally real subspaces of CN, then we have the following a priori
estimate for

(23)
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where C is a positive constant depending on p, tj-1, but not on s*, and where
cO cO + J00t is the standard Cauchy-Riemann operator. (For a proof of this
estimate see [1], [12] or [13].)
We look for a differential equation that is satisfied by W and derive an a

priori estimate using (23). We apply now ok to equation (22) with k > 1 and
obtain

As in the proof of Theorem 3.3, we introduce

0 0 0 0 0

All 0 0 0 0

A22 A12 0 0 0

AN-1,N-1 AN-E,N-1 AN-a,N-1 A1,N-1 0

with Alk :-" ()(M(t))) and

a 0 0 0

11 t 0 0

22 012 0 0

ON_I,N_ ON_2,N_ ON_3,N_ O

with O,k := Then we obtain the following equation for W:

8sW + M(v)StW + ; dtW + W O, (24)

where I/(s, t)l 0 uniformly in as s - oo.
(Remark on the notation: We write again M(v), .lo, Moo for

diag(M(v),..., M(v)), diag(J0,..., Jo), and diag(Moo,..., Moo).)
We have to bring the Cauchy-Riemann operator 0 into play as follows. Define

Too(t) := (-JoMoo(t)) 1/2

and recall that Too(t)Moo(t)Too(t)-1= Jo. Applying Too to equation (24), we
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obtain

0 Os(Too W) + TooMoo Tx TooOtW q- ToohOtW

+ Too (. W) + Too (M(v) Moo)deW

(Too W) JoJ’oo W +Too(&. W) + Too,tOtW + Too(M(v) Moo)tOtW

=: (TW) + A. e,W JoJ’W + To(a W),

where again [Al(s, t)[ 0 as s - uniformly in t.
We estimate with (23), ej(s*) supe/s,,_3lA11 and (fljW)(s, t) flj(s)W(s, t):

< c2 IlO(fl(Z

Remarks. (i) Recalling that T and M are actually diag(T,..., T) and
diag(M,... ,M), we conclude that T(0)R and T(T)JoR, are totally real
subspaces of C so that the estimate (23) can be applied to T W.

(ii) The constants c,..., c5 above do not depend on s* since they only contain
the constant C in (23) or upper bounds for T, Td and their derivatives.

Choose now s) s0 so that ej(s*) 1/2 whenever s* s; hence

1
lljWllwl,(j_,) callWll(j_l)+ c411& Wll(j_,)

and

(25)

for a suitable constant co co(N, p,j) independent from s* whenever s* > s.
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We now proceed inductively. We first discuss the case where N 1; that is,
W (), (), and A vanishes. We know already that is bounded and

$*-t"0

Wll 2 II(s) 2 ds < 2C2,S0L2([0, T])L (Qo)
./s* -o

since II(s)lls- 1.
Using (25), we get for s* > s,

where c depends on 0 but not on s*. By the Sobolev embedding theorem, we
also have bounds

WII<Q> cp < oo

not depending on s*. Inserting this into (25) again, we obtain

t<oowII W-(Q=) Cp (26)

for all Qa2 Q(s*,62) with s* > s. We have shown before (equation (19)) that

’(s) 211Vs(s)ll 2 + (M(v(s))r(s)(s) (s)), + ([VsFl(S)](s) (s))

which implies

for suitable constants c’, c" > 0. Therefore,

II’ll pL,’<’-,=,s*=> (c’IlOs(S)II2L + C")p ds
.I s*-62

S* "2
2p< 2p-1 ((c’)ll0(s)ll, / (c")) ds

(c’)p2p- [s*+a2 IOs(S, t)l 2 dt ds-k- 2Pt2(c")p
JS* --t

< (c’)P2p-ITp-alIosII2v"(Q + 2Pt2(c")p
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where 0 < c" does not depend on s*, using H61der’s inequality and (26) with p
replaced by 2p.
Assume now that W (,0,...,0-1) is bounded in LP(Q(s*,s)) by a

constant c c(N, p) > 0 that does not depend on s* (s* larger than some Sv).
Moreover, we assume that all the derivatives of up to order N 1 are bounded
in LP(s* -fiN, S* + fiN) by constants not depending on s*.
Then by (25),

with 0 < co co(N,p) whenever s*> Sq+l. Each component of . W can be
written as

kl-sl (S) (s, t)
/=0

with suitable real constants kl.
Now , t?,..., 0N-2 are bounded in WI,p(Q6) so by the Sobolev em-

bedding theorem, we have C(Q6)-bounds independent of s* > Sv. The deriva-
tive 0-1 is only (s*-uniformly) bounded in LP, but it is paired with e, which
we know to be bounded; hence - W is bounded in LP(Q(s*,s)) independent of
s*. This gives us an s*-uniform wl,p(Q6/)-bound on W.

In the next induction step (i.e., W (, t?s,..., t?)), the Nth derivative of e
appears in . W, so we still have to show that dSe/ds is (s*-uniformly)
bounded in LP(s tN+l, S* q’- tN+l).

Using (19), we note that dN/dsN can be expressed as follows:

dNo
dsN E

kl+k2=N-
Ck,,k2(Vks’+l($), Vsk2+l ($))

11+12+13=N-1

12 Sdll,12,13([V+lFl(s)]Vs (), V3(S))s

+ E em,,m,m3(M(v(s))V’c3tF,(s)Vn2(s), V’(S))s, (27)
m +m2+m3=N-

where the indices kj, lj, mj range from zero to N- 1, and c, d, e are suitable real
constants. The s*-uniform Wl,p(Q6N/l)-bound on W (, Os,..., t3-1) implies
an s*-uniform C-bound by the Sobolev embedding theorem. Since Fl(s) and
all its derivatives converge to zero as s oe uniformly in t, we also obtain s*-
uniform 0C -bounds for all covariant derivatives V’(s) up to order m- N- 1,
and s*-uniform LP-bounds for V(s). The only expression in (27) that contains
VsN(s) is (VN(S),(S))s, SO IIdN/dsNlli(,,+, can be estimated from
above by the C-bounds on Vsm(s) for m < N- 1 and the L-bound on VsN(s).
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Summarizing, we have shown the following. For each N e N* and 2 < p <
there are constants c c(N, p) > 0 and sr > so so that

kl

whenever s*> s}, 0 < k < N- 1, and e {0, 1}. Applying the Sobolev embed-
ding theorem to , we get the required bounds

sup (s)
so <s<oo

In order to complete the proof, we still have to derive s*-uniform LP(Q(s*,3n))-
bounds for kc3 ct when > 1. We do this by applying sk,l-lvt to

o,(s, t) M((s, t))O,(s, t) + o,(s)M(,,(s, t)) (s, t).

Then one can proceed inductively, and the proof of Lemma 3.10 is completed.

The following lemma is proved in the same way as Lemma 3.6. in [7]. We
only have to use the covariant derivative Vs in the estimates instead of Os. So
we omit the proof.

LEMMA 3.11. Let

e
_

Wr’2([o, TI,R)
_

L2([O, T],R2)

be the eigenspace ofAm belonging to ;t e a(A). Then

inf II(s) -ellv,,(t0,rl,a> 0
eE

as s --LEMMA 3.12.
$ --- OOo

There exists e E such that (s) e in W1’2([0, T],R2) as

Proof. Take any sequence sn oo. By Lemma 3.10, ((Sn))n6N is bounded
in W2,2([0, T],R2). Since W2,2([0, T],R2) is compactly embedded in
W1,2([0, T],R2), we find a subsequence of (sn) (which we denote again by (s))
that converges in W,2([0, T],R2) to some e. Using Lemma 3.11, we conclude
that e E. So every sequence s oe has a subsequence (s’,) so that (s’) con-
verges in W,2([0, T], 112) to some eigenvector of Aoo.
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It remains to show that this limit is unique. So assume that

(s.) ---, e E
in W1,2([0, T],R2) for sequences sn, zn , and show that e e’. We equip
L2([0, T], R2) with the inner product

T

(Ul, U2) (Ul (t), -JoM (t)u2(t)) dt,
0

and we denote the corresponding norm by 11. [I. Let

P" L2([0, T],R2) E

be the orthogonal projection onto the eigenspace E of Ao belonging to the
eigenvalue 2, and let

(s, t) := (P(s))(t).

We claim that A(P(s)) P(A(s)). Indeed

A-(s) Aoo((Id- P)(s)) 4- Aoo(P(s))

A((Id- P)(s)) + (P(s))

and

P(Ao (s)) P(A((Id P)(s))) + Ao(P(s)).

If x e E, then

(A (s) Aoo(P(s)),x) ((s) P(s),2 x) 0,

and therefore P(Ao((Id- P)(s))) 0, proving the claim. Recall that

ds(S, t) (A(s) (s))(t) a(s)(s, t).

Applying P, we obtain with e(s) A(s) Ao,

Os(S, t) (Ao (s))(t) o(s)(s, t)+ (Pe(s)(s))(t)

(- a(s))(s, t) + (Pe(s)(s))(t) (28)
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and

I[P((A(s) Aoo)(s))[I

I[(A(s) ao)(s)ll

If DM(av(s, t) + (0, O, (1 a)t)). (v(s, t) (0, O, t)) da]. ct(s, t)

< C e-PS

using Lemma 3.10 and Theorem 3.3. Define

(s, t) :=
(s, t)
II(s)ll

Then we obtain with (28)

cgsrl(S,
s(S,t)
I[(s)ll
(P(s)(s))(t) (I(s), P(s)(s)

II(s)[I II(s)ll
r/(s, t). (29)

We note that

II(s) (s)l{ o

as s m; otherwise we could find e > 0 so that I](s) (s)]l > e for all large s.

But this would imply

(Id P)(Sn)II - (Id P)el[ 0.

We also have II(s)l[ > 1/2 for all large s because

II(s)ll II(s)ll- lie(s)- (s)ll

3- lie(s) (s)ll.

The last step follows from 114(s)ll --- 1:
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0
((s, t), -JoM(t)(s, t)) dt 1

((s, t), Jo(M(v(s, t)) Moo(t))(s, t)) dt]
I1(s)112= sup IM(v(s,t)) Moo(t)l

O< < T

40 ass .
We deduce from (29), using (/(s), t3srl(s)) O,

2= (Pe(s)(s) Csrl(S))

for a suitable constant co. Then

2 IIPe(s)(s)ll 2

< co e-2s

Sn

II(s) ()11 IlOs(s)ll ds
"/7

< const e-as ds

--0 as n --, oo.

Note that Ilell- Ile’l[ 1 since II(s)[I - 1 as s oe. Because of

(Sn) e
rl(sn) [l(Sn)l lie[---,

() e’

we conclude that e e’, which proves the lemma. 1-]
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Proofof Theorem 3.6. We know from Lemma 3.9 that

((s, t) IlC(s)ll=(s, t)

ef =(r) dr
II(s0)ll0(s, t)

es ()a[g’(t) + r(s, t)],

where

r(s, t) II(o)llso((s, t) e(t)),

.(t) "--[l(so)[loe(t) E,

and e is the eigenvector ofA given by Lemma 3.12. We even have convergence
of (s) to e in C.

Let n N be an arbitrary number. By Lemma 3.10, the function (s) is
bounded in W"+2,2([0, T], R-) independent of s. Then for every sequence z - ,there is a subsequence (Zk) so that (Zk) converges in w"+l,2([0, T],Ra), but
since (s) -, e in W1,2([0, T], R2) already, we have (s) - e in wn+l’2([0, T], R2)
and finally in C([0, T], RE) by the Sobolev embedding theorem. This shows that

IOr(s, t)l ---, o
as s --, oe uniformly in for all > 0. Recall that

Cgs(S, t) IMp(t)- M(v(s, t))]c3t(s, t)

+ (Aoo 2)(s, t) + (2 (s))(s, t). (3O)

Also remember that
I8(M(t) M(v(s, t))l ---, 0 as s uniformly in for all e N2, I1 > 0,
II(A -; )(s, t)]lcl 0 as s since (s) e in C1+1.

Applying t3 to (30) with an arbitrary integer > 0, we obtain

laOs(S, t)l ---* 0

as s -, oe uniformly in t. We want to show that also kct(s, t)[-, 0 as s- oe
for all k > 1. Assume that this holds for some k > 1. If we apply t?It?sk to (30), then

"t’srIrk+l (s, t) EE sr3k-ir31-J[M(v(s t))13+1(s t)
i=0 j=0

k(k) dk-i
Ostt(s,t).E dsk_ (s)

i=0
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We observe that all the expressions with 0 converge to zero by the induction
hypothesis. If 0, we have to use that all the derivatives of of order greater
than 1 converge to zero. This is true because the derivatives of are C-bounded,
so we obtain Coc-convergence (s) --, 2 by the theorem of Ascoli and Arzela. [
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