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1. Introduction. A contact form on an odd-dimensional manifold M of
dimension 2n + 1 is a 1-form A such that the (2n + 1)-form Q, given by

Q=An(dA)",

defines a volume form on M. We observe that any manifold admitting a contact
form is necessarily orientable and that a contact form defines a natural
orientation.

Assume now that (M, 1) is a manifold together with a given contact form.
First of all, we note that A defines a 2n-dimensional vector bundle over M.
Indeed, consider ¢ — M, where £ is given by

ém = ker(lm) .

The linear functional 4, : T,,M — R is nonzero since A A (dA)" defines a volume
form. Hence we obtain a vector bundle. Moreover, by the properties of 4, we see
that w := di| (¢ @ &) is nondegenerate on each fibre. Clearly, w : &, ® £,, — Riis
also skew-symmetric and bilinear; hence it is a symplectic form on ¢,,. Therefore,
(&, w) is a symplectic vector bundle.

Since the dimension of M is odd, dA is degenerate on each fibre T,,M of the
tangent bundle TM. But it is as good as it can be, since 4 is a contact form.
Therefore, we obtain a line bundle £ over M via the definition

by = {p € TuM|dAn(p,q) = 0forall g € &, }.
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We observe that this line bundle has a natural section X; defined by the set of
equations

ix,dh=0, ixA=1.

Summing up, a contact form A on an odd-dimensional manifold M of dimension
2n + 1 defines a natural splitting of the tangent bundle TM of M into a line
bundle £ — M with a preferred section X, and a symplectic vector bundle (¢, w):

TM = (¢,X;) @ (¢, w).

In the following, we always denote the data associated to a pair (M, A) by
¢, w,¢, and X,;. The vector bundle £ — M without its symplectic structure is
called a contact structure on M. The vector field X; is called the Reeb vector
field associated to 1. We observe that, given the contact structure &, we can
rediscover the conformal class of the symplectic structure. Namely, take any
nowhere-vanishing 1-form t with ker(z) = £. Then

A=f-1
for some nonvanishing smooth function f : M — R. We observe that

o=dA(DE) =[ dt|({D).

If M is a (2n+ 1)-dimensional contact manifold with contact form A, then the
symplectisation of M is the manifold R x M with symplectic structure w :=
d(e'A). One verifies easily that w is indeed a symplectic structure (recall that
dA|er 1@ker s 18 NOndegenerate). Assume now that J is a compatible complex struc-
ture on the bundle ker 4, that is:
e J(p) : ker A(p) — ker A(p) is a linear map satisfying J(p)*> = —Id for each
PEM;
¢ J depends smoothly on p;
o J satisfies the compatibility condition that dAo (Id x J) is a bundle metric
on ker A.
(Such J exist; see [10].) We obtain in a natural way the following almost complex
structure on the symplectisation R x M:

J(a,u)(h, k) := (=A(w)k, J(u)mk + h - X3(u)), (1)
where (a,u) e R x M, (h,k) e R x T,M, and
7y = my(u) : T,M — ker A(u)

(- (= (Au)l) - X5(u)
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is the projection onto the contact structure along the Reeb vector field. We
remark that g;j:= wo (Id x J) is a Riemannian metric on R x M (such a J is
called w-compatible). If S is a Riemann surface with complex structure i, then we
define a map

u=(a,u):S—>RxM

to be a pseudoholomorphic curve if

Tuoi=J(u)o Ti.
If (s, t) are conformal coordinates on S, then this becomes
st + J (i) 0,11 = 0. (2)

Using the expression (1) for J and writing @ = (a,u), we obtain the following
system of equations which is equivalent to (2):

7,0su + J(u)m,0,u = 0,
0sa — A(u)0,u = 0, 3)
0ia + AMu)dsu = 0.

Pseudoholomorphic curves (with compact Riemannian surface S) were intro-
duced into symplectic geometry by M. Gromov in 1985 (see [4]) and became an
important tool there. They were used in contact geometry by H. Hofer in 1993
(with § = C) to prove existence of contractible periodic orbits of the Reeb vector
field (see [6] or [1]).

We are interested in a different class of orbits of the Reeb vector field, the
so-called characteristic chords. The terminology is due to V. I. Arnold [2] who
raised a conjecture about the existence question. Let us give the definition: If
(M, 4) is a contact manifold of dimension 2n + 1, then a Legendrian submanifold
is a submanifold ¥ of M, which is n-dimensional and everywhere tangent to the
contact structure ker 4; that is, for each p € &, we have l(p)|Tp ¢ =0. Then a
characteristic chord for (A, &) is a smooth path

x:[0,T] - M, T>0

with
o X(t) = X;(x(1)) Ve € (0, T),
e x(0),x(T)e £.
Arnold raised the following conjecture.
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CONJECTURE (see [2]). Let A be the standard tight contact form

Ao = = (x1dy1 — y1dx1 + x2dy, — y2dx;)

N =

on the 3-sphere
S3 = {(xla}’l,xz,J’z) € R4 | x% + y% + x% + y% — 1}
Iff:8 - (0, 00) is a smooth function and ¥ is a Legendrian knot in S3, then

there is a characteristic chord for (f Ao, &L).

There is almost nothing known about this problem. Arnold only mentioned
the case where f = 1. Here are some simple examples.

Example 1. R® with the standard tight contact form. We consider the contact
form A = dz + xdy on R3. The Reeb vector field is just the constant vector field
0/0z. If a closed curve (x(t),y(t),z(t)),0 <t <1, is Legendrian, then we must
have

z(t) = —y(t)x(t)
and
0=12z(1) — z(0)

. r $(t)x(t) de
0

= Jl y(t)x(t) dt.

0

Consider now the projection of the above curve onto the xy-plane. The
(oriented) area of the set enclosed by the projected curve equals

1
jo (x(0)3(t) — %(8)y(1)) dt =0,

and hence the projected curve must have a self-intersection, which implies the
existence of a characteristic chord.

Example 2. R? with the (standard) overtwisted contact form. In cylindrical
coordinates, we consider the contact form A = cosrdz+ rsinrdg. Then for each
k € Z, the knot

(r, ¢, 2)(¢) := (nk, t,0)
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with 0 <t<2n is Legendrian, but the Reeb vector field on the cylinder
{(mk,t,z) |z € R,0 <t < 2=} is given by

0
X;(nk,t,z) = ("1)k;3;;

hence there is no characteristic chord for these particular knots.

Remarks. (1) If M = 83 = C? is endowed with the standard tight contact
form (i.e., f = 1), then we consider the Hopf-fibration

h:83— CP!
(20, 21) ¥ [20, z1],

where [z, z1] := {(z(,2}) € $*| 30 € S! : 2, = 029, 2| = 0z;}. The fibres are exactly
the orbits of the Reeb vector field. Let £ < S* be a Legendrian knot. Then h(%)
encloses a set whose area is an integer multiple of 4z. This means that (%) has
a self-intersection, so there must be a characteristic chord for .&.

(2) Even if f is C® near to 1, it is not at all clear that characteristic chords
exist, since the dynamics of the Reeb vector field can change completely.

(3) If M is a strictly convex hypersurface in R* with contact form ig|M, then
there is an open-book decomposition with binding orbit P (see [9]). If £ is a
Legendrian knot that is not linked with P, then there is also a characteristic
chord for #. The proof is similar to the ones of examples (1) or (2), except that
we use the Reeb flow to project the knot onto a fixed leaf of the open-book
decomposition. The projected curve must also have a self-intersection.

(4) If M and P are the same as above, but P and & are linked, the answer to
whether there is a characteristic chord is not known. We can only give an affir-
mative answer in the special case where M is an “irrational ellipsoid”; that is,
where

M = {(21,22)€C2||—ZL|—+|ZL|—1}
r r
with r3 2/r? r{ irrational and with contact form Ao, but the proof is nontrivial (one
proves the existence of a nonconstant finite energy half-plane).
If Ht :={s+ite C|t >0} is the closed upper half of the complex plane,
(M, ) is a closed contact manifold, and ¥ = M is a Legendrian submanifold,
then we define a finite energy half-plane to be a map

= (au): Ht 5 Rx M

that satisfies the following conditions:
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(i) 8y + J(i@)d,ii = 0 on H;

(i) #(0HY) cR x &;

(iii) u(H™) is contained in a compact region K = M;
(iv) u has finite energy

E(i) = supJ i d($1) < +o0
gex Ju+

(where X := {¢ € C*(R,[0,1]) |4’ = 0}).
We prove in Section 2 that the existence of a nonconstant finite energy half-
plane implies the existence of a characteristic chord for (4,.%). More precisely,
we have the following theorem.

THEOREM 1.1. Let u be a finite energy half-plane that is, in addition, non-
constant. Then T := [, u*dA >0, and any sequence of positive real numbers
tending to +o0 has a subsequence Ry — +00, so that the maps

0, T| - M
t > u(Ry €™/ 1)

converge in C*® to some orbit x of the Reeb vector field X, with x(0),x(T) € &.

In the following, we only discuss the case n=1; that is, (M,4) is a 3-
dimensional manifold, and % is a Legendrian knot. If x is a characteristic chord
for (4, %), then the pair (x, %) is called nondegenerate if

ker A(x(T)) = Tor(x(0)) Tyo) & @ Tur)<,

where ¢ denotes the flow of the Reeb vector field X;. In Section 3 we prove the
following refinement of Theorem 1.1 under the additional assumption that x is
nondegenerate.

THEOREM 1.2. Let 4 be a nonconstant finite energy half-plane. If Ry — o0 is a
sequence of positive numbers so that u(R;e™/T)) converges to a nondegenerate
characteristic chord x, then, in fact, we have

lim u(Re®™¥/ D)) = x(t)
R—x

with convergence in C*([0, T)).

In order to study the existence question for characteristic chords, it is im-
portant to understand the behaviour of finite energy half-planes near infinity.
Assume that # is a finite energy half-plane that satisfies the assumptions of
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Theorem 1.2. Let ¢: R x [0, T] — H*\{0} be the biholomorphic map (s,t)
e(®/T)s+i1)  Considering the finite energy strip ¥ := i o ¢ instead of @, we have

* 050+ J(8),5 =0,

* Y(Rx{0,T}) =« &, where v:=uog,

e E(D) < oo,

¢ (R x [0, T]) is contained in a compact region in M,

o lims,v(s, t) = x(t).
Hence, by Theorem 1.2, we can study v : [so, 00) X [0, T] — M in a neighbour-
hood of x([0, T]) if so is sufficiently large. The other important ingredient for
further study of (s,t) — #(s,t) for large s is a local coordinate description of a
neighbourhood of x([0, T]) (Lemma 3.2). Then we may assume that

* v has image in R?,

¢ the Reeb vector field is parallel to the z-axis,

e the characteristic chord is given by ¢ +— (0,0, t),

¢ the boundary condition is v(s,0) e R-(1,0,0) and v(s,T)eR-(0,1,0) +

(0,0, T).

(We are only interested in characteristic chords that satisfy x(0) # x(T).)
Writing (s, t) = (b, x,y,2)(s,t) € R x R? for the components of 5, we prove the
following result, which states that the convergence of v(s,t) to x(t) is of expo-
nential nature.

THEOREM 1.3. Let #:[sp,0) x [0, T] = R x R® be a finite energy strip as
explained above. Then there are constants by e R, r > 0, so € R so that, for each
multi-index o = (a1,0) € N2, 0 < p < min{r/2,1/T}, and s > sy we have,

1, -rs

sup [0"x(s,t)| < c,e” "™,
0<t<T

1 -rs

sup [0%y(s,t)| < cpe™™,
0<t<T

sup |0%(z(s,t) — t)| < cZe™*,
0<I<T

sup |0%(b(s,t) — by — s5)| < ce™”,

0<t<T

where 0% = (0/0s)™ (0/0t)* and c},c2,c2 > 0 are suitable constants (we adopt the
convention that zero is contained in N ).

If we denote by { = (x,y) the components of v that are transversal to the
characteristic chord, we even get an asymptotic formula for {. Before we can
state the result, we define an unbounded linear operator 4, with domain of
definition Wl-l’z([O, T],R?), which we define to be the set of paths y : [0, T] — R?
of class W2 satisfying the boundary conditions y(0) e R-(1,0) and y(T)e
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R (0,1). Then we define

A : L*([0, T],R?) > W 2([0, T],R?) — L([0, T],R?)
by
(A - Y)(2) = —M o (t)i(t),

where we abbreviate M, (t) := M(0,0,t).

THEOREM 1.4.  If { does not vanish identically, we have the asymptotic formula

{(s,t) = exp <JS a(t) dr) le(?) + r(s, 1)],

S0

where
sec Wl-l’2 ([0, T), R?) is an eigenvector of Ay, corresponding to some eigenvalue
A<0 (here L2([0,T]),R?) with the equivalent inner product (.,.)=
Jo <., =JoMy(t).> dt) and Ay, is selfadjoint;
® o :[sp,0) — R is a smooth function satisfying a(s) — 1 as s — oo;
* 7[5, ) x [0, T] = R? is a smooth map with

|0%r(s, )| — 0,

as s — oo uniformly in t, and where o € N? is some multi-index (recall that, by
convention,0 e N).

It is important for the proofs of both Theorems 1.3 and 1.4 that ¢ solves a
boundary value problem of the following type:

0sL(s,t) + M({(s, 1), 2(s,1))0:L(s, t) = O,
{(s,0) eR-(1,0), (4)
{(s,T)eR-(0,1),
where 12\4 is a matrix-valued function defined near {(0,0)} x [0, T] = R*® with
. MTIoM = Jo with Jo=(" D,

e —JoM > 0.
Defining the differential operator A(s) acting on paths y € WI-I’Z([O, T],R?) by

(A(s)7)(2) := —M((s, 1), 2(s,1))3(1),



FINITE ENERGY SURFACES AND THE CHORD PROBLEM 249
we can write equation (4) as follows ({(s) := {(s, .)):
05L(s) = A(s) - {(s).

One can find inner products (., .), on L2([0, T], R?), which are equivalent to the
ordinary L?-product, so that A(s) becomes a selfadjoint operator on

(L*([0, T],R?), (-, .),).

This is essential for the proofs of both Theorems 1.3 and 1.4. In [7] and [8],
where similar results are derived for finite energy planes, the authors can carry
out a change of coordinates so that M(s,t), A(s), and (., .), are transformed
into s-independent quantities. In contrast to [7] and [8], we are dealing with
a boundary value problem (4), and any change of coordinates removing the
s-dependence in M(s,t), A(s), or the L2-product will make the boundary con-
dition nonlinear.

So we have to work with an L? inner product that depends on s and a family
of operators (A(s)),s,, instead of just one operator. This is the main reason that
Theorems 1.3 and 1.4 have to be proved differently than their counterparts in
[7] and [8].

2. Finite energy half-planes and orbits of the Reeb vector field. We describe
now the relationship between pseudoholomorphic half-planes of finite energy
and characteristic chords. The main theorem of this chapter is as follows.

THEOREM 2.1. Let u be a finite energy half-plane as above, which is, in addi-
tion, nonconstant. Then T := fH+ u*dA >0, and any sequence of positive real
numbers tending to +oc0 has a subsequence R, — +00, so that the maps

0, T - M
t > u(Ry e®7)

converge in C® to some orbit x of the Reeb vectorfield X ; with x(0),x(T) € &.

The proof requires some preparation. The following proposition states that
finite energy half-planes with “trivial dA-energy” must be constant. The bound-
ary condition plays an important role in the proof.

PROPOSITION 2.2.  Let 1 be a finite energy half-plane with

J u*di=0.
H+

Then i must be constant.
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Proof. With z = s+ it, we compute

0= J u*dl= lj (|7t,163u|3 + |madu3) ds A dt.
H+ 2 H+

Hence 7; o Tu(z) : HY — ker A(u(z)) is the zero map for all z € H*. Moreover,
= 1 2 2
0 = > (Imadsul; + |madul3) ds n dt

=u*dAi
= —d(daoi)
= Aa-dsndt
hence a is a harmonic map. Define now
f:H* >R

t

f(s,t) := L 0sa(s, 7) dr,

and note that d;a(s,0) = —A(u(s, 0))dsu(s,0) = 0 because of the boundary condi-
tion. Then

@t :=a+if : H" - C.

is a holomorphic function with ®*(0H*) = R. We define the holomorphic func-
tion
»:C->C

o(z) = ®*(z) if ze HY,
?)= ®(z) if ze C\H*.

Now, with ¢ € X and 74 := d(¢(s) dt) = ¢'(s) ds A dt, compute
J (q)+)*t¢ = J ¢/(a)(asa2 + 6ta2) ds A dt
H+ Ht

= | wawn

< +o00.
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We distinguish the following three cases:
(1) ®* is constant.
(2) |V@*| is bounded, but ®@* is not constant.
(3) |V®*| is unbounded.
Case 1. If ®* is constant, then a is constant, too. Since

AMu)osu = —0a=0
and

Mu)owu = 0sa = 0,

the map Tu(z) has an image in the kernel of A(u(z)). However, we saw before
that 7; o Tu(z) is the zero map, so Tu(z) is always zero and u is constant.

We show now that the other two cases cannot occur.

Case 2. If |V®*| is bounded, then |V®| is also bounded. By Liouville’s
theorem, the functions d;®, 6,® : C — C must be constant; hence, ® must be an
affine function

D(z)=az+fp

with B € C and « € C\{0}. Since ®(0H*) = ®*(dH") = R, the numbers « and
must be real. We obtain

J (@)t = J #'(a)(8sa* + ,a%) ds A dt
H+* H+

=a? J #'(a)ds ndt
H+

= |cx|J ¢'(0)do A dt
H+
= +oo for any nonconstant ¢ € X

in contradiction to [y, #(d(¢A)) < +oo.
Case 3. If |[V®*| is unbounded, we can pick sequences (z;) = Ht and ¢, \, 0
so that

R} :=|V®(z})| = + 0
and

&k — 0.
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Applying a well-known lemma of Hofer’s (see [1] and [5]), we find sequences
& \, 0 and (z;) = H* with

e &Ry := 8k|V®+(Zk)| = 8;CR',

® Iz;c - Zkl < al’cy

o VOt (y)| < 2|VDT(z4)|Vy with |y — z| < &
We have to consider the following cases, where z, = s; + ity:

e t; Ry — +o00 (without loss of generality, assume Ry /' +o0),

e 4Ry — le [0,+OO).

Let us begin with the first case. Define the holomorphic maps

Oy(2) = O (zk n Rik) 0 (z),

which are defined on

Qp := {(S, t) eC | t>= -—thk}.

We compute

1 z
(0] = |Vt — 1.
Vou(2) Wd>+<zk)||v (Z"‘“Rk)'

Hence
[V (0)] =1,
|[VOi(2)| <2 for z € B,g,(0),

@;(0) = 0.

Let K be a compact subset of the complex plane. Choose kg so large so that for
all k> ko we have K < Q; and K < Bg,(0). Then (®y),,, is a sequence of
nonconstant holomorphic functions on K, which is uniformly bounded in C'.
Using the Cauchy integral formula, we obtain uniform C*®-bounds on K. By the
Ascoli-Arzela theorem, there exists a subsequence (@) = (®x) that converges
in C®(K). Iterating this process by taking larger K and extracting further sub-
sequences from (@), we get, by choosing a diagonal sequence, some sub-
sequence of (@) that converges in C%, to a holomorphic map

¥Y:C-C

satisfying |V¥(0)| = 1 and |V¥(z)| < 2. By Liouville’s theorem, ¥ must be an
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affine (nonconstant) function. Defining ¢, (s) := ¢(s — Re(®*(z))) € Z, we have
+o0 > E(i1)

2 | u'd(gd)
H+

J

=| (D),

JH*

= ‘D;T,;.

Jo,

On every compact K < C, we have
J L P J Y14
K K
for k — +oo. It follows that, for any nonconstant ¢ € X,
+o00 > E(i1)

= ‘P*‘C¢
JC

= ‘L'¢
JC

—[ #'(s)ds ndt
Jc

= +00.

This contradiction shows that the first case cannot occur. So let us consider the
second case.

Here we define the following holomorphic maps, where z=s+it and
Zy = Sk + ity:

Di(2) == D* (Re 2+ I—{Z;) — ®*(Rez)

—_ ot St _
=@ (sk-l-Rk,Rk) D (s¢,0).
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They are defined on the upper half-plane H* and map the boundary 0H™ into
the real numbers. We calculate

1 st
V@i (s, t)| = ——— |VO+ 2L

so that
qu)k(O, Rktk)l =1
and
|V (s,t)] <2
for all (s,t) € B,,r, (0, Rety) " H. For any compact subset K of H*, we can find
some number ko so that for all k> ko we have K < B,g, (0, Ritx). Since
®(0) = 0, we obtain a uniform C!-bound for the sequence (®y), k- Reasoning

as before, we obtain C}, convergence of some subsequence of (@) to a non-
constant holomorphic map

¥:H" - C,

which satisfies |[V¥(z)| < 2 and ¥(0H") = R. Using the Schwarz reflection prin-
ciple, we can extend ¥ to an entire holomorphic function that must be affine by
Liouville’s theorem. H := W(H") is then again a half-plane in C, and we com-
pute, as before,

+o0 > E(it)
> J (@)1,
Ht
= J ((DI)*TW
H+
where @, := ¢(. — Re®" (s, 0)) € Z. On every compact subset K of H*, we have

lim | ®jry=| ¥y
k—+00 JK ke JK ¢

For any nonconstant ¢ € X, we obtain the contradiction
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E(u) = \P*‘C¢
JH*

= T4
JH

—[ #'(s)dsndt
Ju

=+CD,

which finally proves the proposition. O

The next proposition shows that the gradient of a finite energy half-plane
is bounded in C°. For convenience, we transform a finite energy half-plane # to
the infinite strip R x [0, 1] by considering # := ii o ¢ instead of i, where ¢ is the
biholomorphic map

$:Rx[0,1] - H\{0}
#(s,t) == gm(sit)

We call © a finite energy strip since E(7) = E(i1) < oo.

ProposITION 2.3. Let o = (b,v) : R%x [0,1] > R X M be a solution of the
boundary value problem

dsb + J(9)0,5 = 0,
v(R x {0,1}) =« £Z.
Assume, moreover, that v(R x [0, 1]) is contained in a compact region K < M and
E(®) < +0.
Then

sup |Vi(s,t)| < +oo0.
(s,t) eRx[0,1]

Proof. Assume there are z} = (s}, ) € R x [0, 1] with
i = V(s )| = +o0.

Then we must have sy — +00. Otherwise, if we had s; < ¢ for a subsequence,
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then the sequence ¢(z;) would be contained in some half-ball B%(0), but
supB;(O)IVﬁl < const and |Vi(z)| = ne™|Vii(¢(z))|. This is a contradiction since
this expression would be bounded.

We may assume without loss of generality that the sequence (t;) converges to
some o € [0, 1]. Choose now a sequence (g;) of positive real numbers converging
to zero so that still Rje; — +co. Hofer’s lemma gives us now new sequences
&\, 0 and (zx) = R x [0, 1] with

* g Ry := BkIVf)(Zk)‘ = 8;(R;‘,

* |z -z < g

o |Vi(y)| < 2|Vi(zi)|Vy with |y — z| < &

Define now

Di(s, t) := (bi(s, 1), vi(s, t))

= (b (zk + RE;:) — b(z), v<2k +§z;)),

where z = (s, t) is contained in

Qp:={(s,t) eC| — tx Rk <t < Ri(1 — 1) }.

We have

(1) V& (0)] = 1,

(2) |Vi(2)] < 2Vz e Byg,(0) nQy,

(3) bi(0) =0,

(4) vk(an) c 2.
Because of (2), (3), and the assumption v(R x [0, 1]) = K, we have a C{’oc-bound
on all the maps #; uniform in k. Using the usual regularity estimates (see, for
example, [1]), we get uniform C5-bounds. This implies, by the Ascoli-Arzela
theorem, that a subsequence of 7 converges in C%, to some limit

w=(B,w): Q> RxM,

where Q < C depends on the following cases:
(1) We have —t;Ry — I € (—o0, 0] (then necessarily Ri(1 — tx) — +00), where
we have Q = H_;:={ze C|Im(z) > —I} and w(6H_;) c £.
(2) We have —t; Ry — —oo0.
(a) For

Ri(l—t) o me [0, +00),

we have Q = H™ := {z e C|Im(z) < m} and w(0H™) = &;
(b) for

Rk(l — tk) — 400,

we get Q = C.
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In all these cases, we have
AW + J(W)d,w = 0,
[Vw(0)| = 1,
[Vw(z)| < 2.
We claim that
e E(w) < E(D),
o [ow*di=0.
Take ¢ € X, and define ¢, € by

#i(s) := (s — b(zx))-

Then

5y d(gh) = j 5 d($d)

J Bys, (0) N B, (z21)n(Rx[0,1])
<| sae
Rx[0,1]

< E(5).

257

Now choose any compact subset K of Q and find ko € N so that, for all k > ko:

K c BRkek(O) ('\Qk.
Then

J 5 d(ph) <E() k> ko,
K
and therefore
J " d($1) < E().
K
Since this holds for all compact subsets K of Q, we obtain

|, # a1 < EG)
Q
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and, finally, taking the supremum over all ¢ € Z,
E(W) < E(D).

Now let K be any compact subset of Q. Then, for k large enough, we have
K < Bg,,(0) nQy and

J wrdi <
K

J w*dl—J v;dA’+J of di
K K Bchk(o)f\ﬂk

J w*d/l—J vidli-{-] v* dA.
K K B;k(zk)n(RX[O,l])

The first term converges to zero for k — 400, but the second one also does
because of

<

[ wa=| @) < BG) <+oo,
Rx[0,1] Rx[0,1)
where ¢, = 1 € Z. This implies finally

J w*dAi =0,

Q

because the integral vanishes over any compact subset of Q. If Q is a half-plane
in C, then Proposition 2.2 would imply that w must be constant, which contra-
dicts the fact that the gradient in zero does not vanish. Hence our assumption at
the very beginning (that the gradient is unbounded) must be false.

Since Proposition 2.2 also holds for finite energy planes (see [1] or [6]; the
proof is simpler than for half-planes), we also arrive at a contradiction in the
case Q = C, which finishes the proof of the proposition. O

Now we are ready to prove Theorem 2.1.
We assume that we have transformed our finite energy plane to a finite energy
strip & = (b, v). So take any sequence sy — +oo and define

i :Rx[0,]] o Rx M
5k($, t) = (b(s + Sk, t) - b(Sk, 0)7 U(Sk +s, t))
=: (bi(s, t), v(s, 1)).

Then
be(0,0) =0
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and

(R x {0,1}) =« L.

[e o] e 3 [ee]
As before, we get C¥ -bounds, and a subsequence of () converges in Co, to
some

w=(f,w):Rx[0,1] - Rx M,

satisfying
o 0w + J(W)dw = 0,
* wRx{0,1}) c &,
e E(W) < +00,
* ﬂ(()’ 0) =0,
® SUP(, 1) e rx[0,1)| VW(S, 1)| < +00.
Fix sp € R. If —R < min{sq + s, 0}, then

v*dl:—-]

v* A+ J v*A
{“R}X[Oyl]

J[—R,so+sk]x[0,1] {s0+sk}x[0,1]

+ J v — J v*A
[=R,s0+s] {0} [—-R,so+si] x {1}

= J VA — J v*A
{so+sk}%[0,1] {-R}x[0,1]

because of the Legendrian boundary condition. Moreover, the second term tends
to zero as R — +oo, since v(s, t) converges to a point as s — —oo. Hence

vidl = J v*A

J (—o0,50+si]x[0,1] {so+se}x[0,1]

= j v A
{s0}%[0,1]

and

J w*l:J v*dl:J uw*di=:T>0.
{s0}x[0,1] Rx[0,1] H+

For every R > 0 we have

vidd = J ot da,
[—R+sk,R+s)x[0,1]

J [-R,R]x[0,1]
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but this converges to zero as k — oo because the integrand is nonnegative and

0< j v dA < .
Rx[0,1]

Hence f[_ RRIX[, 1] w*dA = 0 for every R > 0, and therefore

J w*di=0.
Rx[0,1]

As in the proof of Proposition 2.2, we see that 7; o Tw(z) is the zero map, and
therefore Af = 0. We note that, due to the boundary condition

w(R x {0,1}) =« &,
0:f = —A(w)0sw must vanish identically on R x {0, 1}. Our aim is to show that
must be an affine function depending on s only. Let us see first that this implies
the existence of a characteristic chord.
Assume that
B(s,t) =as+b
with a,b € R. Then
Osw = m0w + (A(w)0sw) X1 (w)
= =08 Xa(w)
=0

and
0w = m;0,w + (A(w)0w) X (W)

= asﬁ . XA(W)
=aX;(w)
# 0,

since f =const would also imply that w is constant in contradiction to

f{so}x[o,l] w*l > 0. Hence
t
x(t) == w<5,3>
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x(t) = %(%w (sé)

= Xa(x(1))-

satisfies

We compute

1
T= j Wi = J (A(w)d;w) dt = a,
{s0}x[0,1] 0

and therefore
w(s,t) = (Ts+ c,x(Tt)).
By construction,
v(sk,t) — x(Tt) in C*([0,1)),
which is equivalent to
u(e™ i) — x(Tt)
and, replacing t by ¢/ T,
u(e™* UM — (1) in C*([0, T]),

where x(0) = w(s,0) € & and x(T) =w(s,1) € &; hence x is a characteristic
chord.

We are left with the proof that f§ is an affine function depending on s only. We
put y := 0,8 and recall that

e Ay =0,

¢ C:= suppyq y|7| < 00,

“ %(5,0) =5 1) =0,
If we define

t

(s, t) := J

N
0y(s,7)dz ~ | 2t0,0)do,
0 0

then f :=y+id is a holomorphic function with a bounded real part; g(s,t) :=
e/1) is also holomorphic with

lg(s, 1)] = |7 - 29| < €€
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and
lg(s,0)[ = lg(s,1)| = 1.
For each ¢ > 0, we define the holomorphic function k4, on R x [0, 1] by

_ 1
T 1l—igz’

he(z) :

Then

1
he(2)f} = ———— < 1,
Ihe(2)] €252 + (1 + et)?

and therefore
lg(2)he(2) < 1
for ze R x {0,1}. We also have, for z ¢ iR,

1
< —_—
|h8(z)| 3|S|

in view of |1 — iezz|2 > &2s%. Consider now the holomorphic function gh, on
Q:=[—eC1,e%% 1] x [0,1]. We have

l9(z)he(2)] < 1

for z € 0Q and, by the maximum principle, this estimate holds also for z € Q.
Since also |g(z)h(z)| < 1 outside Q, we obtain finally that

lg(2)he(z)] <1 VzeR x[0,1], e> 0.

Fixing z € R x [0,1] and considering the limit ¢ — 0, we conclude that |g(z)| =
e’ < 1, and therefore y(s,t) <O0. Repeating the same argument with —y
instead of y, we obtain y(s,t) = 0, so y = 0.

Hence f does not depend on t and is harmonic, which implies

B(s,t) =as+c

with real constants a and c. This completes the proof. O
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3. Asymptotic behaviour of nondegenerate finite energy half-planes.

3.1. Convergence at infinity. Let (M,1) be a closed 3-dimensional contact
manifold, let ¥ < M be a Legendrian knot, and let x: [0, T] — M be a non-
degenerate characteristic chord; that is,

x(t) = X (x(t)) forO<t< T,

x(0), x(T)e &
and

ker A(x(T)) = Tor(x(0)) i) & @ Tyr)Z,

where ¢ denotes the flow of the Reeb vector field X;.
For the moment, we stick to the case where

x(0) # x(T).

If it happens that x is a closed orbit, then we will only get an immersion in
Lemma 3.2 below. It is possible to avoid this problem if we pass to the universal
cover of a tubular neighbourhood of x and carry out our constructions there. In
this section, we prove the following theorem.

THEOREM 3.1. Let u be a nonconstant finite energy half-plane. If R, — o is a
sequence of positive numbers so that u(Rie™T)) converges to a nondegenerate
characteristic chord x, then we have, in fact,

lim u(Re™/T)) = x(t),
R—

with convergence in C* (|0, T]).
First we show that there is some kind of normal form near x([0, T]).

LEMMA 3.2. There are open neighbourhoods U = M of x([0,T]), V < R® of
{(0,0)} x [0, T], and a diffeomorphism yy : U =V so that

e Y(x(t)) = (0,0,¢) for all t € [0, T,

o Yy*(dz+ xdy) = Aly.

Proof. Take § > 0 so that x: [-J, T +J] — M is still an embedding (recall
that we assume x(0) # x(T)). We identify T oM = ker A(x(0)) ® R - X;(x(0))
with R* = R?@®R. If B = R® and W = M are suitable open neighbourhoods of
zero and x(0), respectively, then the exponential map

exp: B - W

with respect to any Riemannian metric on M is a difftomorphism with exp(0) =
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x(0) and T exp(0) = Idgs. Then define
®:Bx[-0, T+ > M
(x1, %25 1) = @,(exp(x1, x2; 0)),
Yvhere B= (Rz x {0}) n B’ and ¢, is the flow of X;. The map ® has the follow-
ing properties:

* @(0,0,t) = ¢,(x(0)) = x(t), in particular, ®|q o) x[s,T+¢ IS a0 embedding;
e the derivative

T®(x1,%2,t) : R x R = Tp(x, x, 0 M
is an isomorphism if B is chosen sufficiently small.

Then there is a neighbourhood U of {(0,0)} x [-J, T +4], so that ®@|; is a
diffeomorphism onto its image. Moreover, we have the following with 4; := ®*4:

)'1 (0> 07 t)(éla '):Za T) = (4”:)-)(3‘(0)) : (TX}.(X(O)) + (él ) 62) 0))
=71
that is, 41(0,0,t) = dt = 4(0,0,t) with Ao(xy, Xx2,t) = x1dx, + dt. We have used

the fact that the flow of the Reeb vector field ¢, preserves the contact form
@; A = 1. The Reeb vector field of the contact form 4, is given by

0
XAI(X1,X2,t) = a

If we write A =adx;+bdx;+cdt, then dA; = (0x,b— 0x,a)dx; Adx,+

(0x,¢ — 0ra) dx1 A dt + (Ox,c — 0;b) dx3 A dt. We obtain from X, = (0,0, 1) that ¢
is identically 1 and

0x,c—0ia= —0,a =0,
Ox,c —0tb=—-0;b=0.
Hence
A1(x1,x2,t) = a(x1,x2) dx; + b(x1,x2) dxs + dt
and

dAi(x1,%2,t) = (Ox,b — 0x,a) dx1 A dx;.
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A1 AdA; never vanishes, and hence 0x,b — 0x,a is never zero. We may assume
that always x,b — dx,a > 0, since otherwise we could have composed ¥ with

the diffeomorphism (xi, x2,t) — (X2, x1,t), which would have interchanged the
roles of a and b in the formulas above. Defining for s € [0, 1]

U = (1 = 8)A1 + sho,
we compute
ps A dpg = [(1 = 5)(0x,b — 0x,a) + s]dxy Adxy Adt
#0.

Hence (4;)g< < is a family of contact forms all having the same Reeb vector
field 0/t = (0,0, 1). We can write

R3 =R- (03 01 1) ® ker#s(xl’va t)'

Since y; is a contact form, du, must be nondegenerate on ker u,. Choose now a
time-dependent vector field ¥; with

iys,us = 0,

, d
iy, dpts = — 5o = A1 — Jo-

Choosing the neighbourhood near {(0,0)} x [-d, T + 9] sufficiently small, the
flow ¢, of Y; exists until time one because A; and o coincide on {(0,0)} x
(-4, T + 6], which implies ¥;(0,0,¢) = 0 for all s. We compute

d . _ .(d
T5¥sts = 05 gkt Lk

(p:(ﬂ.o - )”1 + d(iYsluS) + iYs d/"s)

0.

Hence Ay = py = @Jpo = ¢iiy = ¢5(dt + x1dxz), and (g0 Yy log™!) is the
required diffefomorphism. O

Proof of Theorem 3.1. Assuming by Whitney’s embedding theorem that M
is embedded into some R, we can equip the set C*([0, T], M) with the usual
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Fréchet metric. Then the set
X :={yeC([0,T],M)|y(0),y(T) € £}

also becomes a metric space.

By Lemma 3.2 and the nondegeneracy assumption, the following is true:
There is an open neighbourhood U = X of x so that U does not contain any
path y € X that satisfies y = X;(y).

Define the set

Fri={yeX|y=X»}

Take open neighbourhoods Vi, V, = X of x and #r\{x}, respectively, which
have positive distance from each other. As in the proof of Theorem 2.1, we con-
sider, instead of 4, the finite energy strip

v=(b,v) =tio¢g:Rx[0,T] > Rx M
with ¢(s, t) = @ T+ By assumption, there is a sequence s — +o0 so that
v(Sk, -) — X

in C*([0, T], M).

Hence v(s,.) € V; for all large k. We now proceed indirectly. Assuming that
v(s, t) does not converge to x(t) in C®([0, T], M) as s — oo, we pick a sequence
ox — oo so that v(oy, t) does not converge to x(t). By Theorem 2.1, the sequence
(0x) has a subsequence (o}) so that v(o},.) converges to some Xe Sr in
C*([0, T], M). Since X # x, we have v(a},.) € V, for all large k. Passing to suit-
able subsequences of (sx) and (o},), we may assume that

Sk < 0) < Spa

for all k. Moreover, s; € V; and g}, € V, for k sufficiently large.
Because s v(s,.) is a continuous path in X, we can choose s; € (sk, 0k) sO
that

v(s;c, ) ¢ V1 v Vz. (5)

Using Theorem 2.1 again, we conclude that (s;) has a subsequence (s}) so that
v(sy,.) converges to some y € r, which is not possible in view of y e V; U V;
and (5). |

3.2. Exponential decay estimates. We have shown in the last section that
under the assumption of nondegeneracy, the finite energy half-plane actually
converges asymptotically with the characteristic chord. Studying the finite
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energy half-plane carefully near the chord, we are able to show that this con-
vergence is of exponential nature. In view of the local coordinates that we estab-
lished in Lemma 3.2 and the convergence result (Theorem 3.1), we are in the
following situation:

M = (R3,dz + xdy) = (R3, Jy),
xo(t) =(0,0,2); 0<t<T.
For k = 1,2, we have Legendrian curves
et (=1L, +1) > R 2= y((—1,+1)),
which are embedded and satisfy
71(0) = (0,0,0),
72(0) = (0,0, T).
Since we assume that we have a nondegenerate situation, we get
Spang{é; := 7,(0); &; := 7,(0)} = R? x {0}.
We have a finite energy strip
¥ : [s0,0) x [0,T] = R x R®
b= (b,v) = (b;x,,2),

where we choose sp so that the finite energy strip has an image in the coordinate
neighbourhood given by Lemma 3.2 whenever s > sp. We summarize some
properties of v:

(1) 0sb — Ao(v)0rv = O;

(2) Ao(v)0sv + 0:b = 0;

(3) 72,050 +j(v)7s, 00 = 0, where j:kerdg — kerdyp is a complex structure
compatible with do; that is, j2 = —Id and dAg o (Id x j) is a bundle metric
on ker Ag;

@) v(s,-) — xo in C*([0, T],R?) as s — oo, which implies

atb(s, t) e 0,
§— a0
6Sb(s, t) s—>_00> 1

in C*([0, T}, R%);
(5) v(s,0) € Z1,0(s,T) € &,
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The aim of this section is the following theorem, which states that we have
exponential convergence of (s, t) to (s,t) — (s + const, 0,0, ).

THEOREM 3.3. Let #:[sp,0) x [0,T] — R x R® be a finite energy strip as
explained above. Then there are constants by e R, r > 0,50 € R so that for each
multi-index o = (01,0) € N2, 0 < p < min{r/2,1/T}, and s > sy we have

sup |0*x(s,t)| < cle™™,
0<t<T

sup |8%y(s,t)] < cle™™,

0<t<T

sup [8%(z(s,t) — t)| < ce ™,
0<t<T

sup |0%(b(s,t) — b — 5)| < e,
0<I<T

where 0% = (0/05)*(0/0t)™ and cl,c?,c3 > 0 are suitable constants. (We adopt
the convention that zero is contained in N.)

Define a linear map Age GL3(R) by Agj,(0) = (é),A0y2(0)= (g) If
. . — 0 . .
7,(0) = (ﬁé}),yZ(O) = (f%%), then Aj!= (Zéi Zéi (1)) Considering (b, Aov)
instead of (b,v) =7, we may still assume that properties (1)—(5) hold
with 3,(0) = (é), 7,(0) = (g), and j a complex structure on kerA;, where
A1 is given by

A = (anx + apzy) - (a1 dx + ax dy) + dz,

which is compatible with di; =detA~!-dxAdy. The Reeb vector field
X, (x,,z) still equals (0,0, 1).
For é > 0 small, we may write

Uy n 21 = {(x, fi(x),g1(x)) | x € (—4,9)},
Uz 0 22 = {£2(5),7,92(9) |y € (=6,9)},

where Uy, U, are some open neighbourhoods of (0,0,1) and (0,0, T), respec-
tively, and f1, f2, g1, g2 are real-valued functions defined on (—d,d) with
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0 = £1(0) =/2(0),
0=4g1(0); T = g2(0),
0 =11(0) =£5(0),

0= 41(0) = 2(0).

Now choose a smooth function f: R — [0, 1] for some 0 < ¢ < T/2 with

B=0 on(—o0,¢)
g=1

B'(z) 20 forallzeR.

on (T — ¢, )

Define

®:(-6,0) x (=6,6) xR = R3

b x = f2(y)
(y) =1 y=filx) |,
z+ h(x,y,2)

where h is given by

h(x,,2) = B(2) [T = g2(y) + g1(x)] ~ 91(%)

and where 6 > 0 is chosen so small that det D®(x, y, z) # 0 whenever |x| and |y
are smaller than J. In view of ®(0,0,z) = (0,0,z), the map ® is a diffeomor-
phism between certain open neighbourhoods of x¢([0, T']) = {(0,0)} x [0, T] satis-
fying D®(0,0,z) = Idgs. For sufficiently small 4, we have ®(x, fi(x),g1(x))
€R-(1,0,0) and ®(f2(y),y,92(y)) eR-(0,1,0) + (0,0, T). For s large enough,
we consider now (b, ®(v)) instead of . The properties (1)—(5) still hold with Ao
replaced by 4, = (®7!)*A;, while we may replace #; and %, by R - (1,0,0) and
R-(0,1,0) + (0,0, T'), respectively. Moreover, j is now a compatible complex
structure on ker A;. By computing D® and its inverse, we see that 15(0,0, z) = dz,
dA7(0,0,z) = detA~! - dx Ady, and

Xlz(x’ ) Z) = (1 + azh((p_l(x’ Y, Z)))—l ' (Oa 0, 1) =:f(x7 Y, Z) : (Oa 07 1)
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with f(0,0,z) = 1. Moreover, we have

A =},dz+c1dx+czdy

with ¢c;=¢c,=0 on {(0,0)} xR and di, =a-dxady with a=detA~! on
{(0,0)} x R. We calculate

df (p) = —(1+ 8:h(®~(p))) 2D, h(® ! (p)) DD~ (p);

hence
df(0,0,2) = —(D0,h)(0,0,z) = 0.

The contact plane ker 4;(x, y, z) is generated by the vectors

1

0 1
e = ¢ = < 0 )
Ttran@ /., T e
and
0 0
1
ey = o = ( 1 )
Ttran@n /., T e
We compute
Ax(v1, 02,0
7512(01,02,03) = (vla 02,03) - 2(1—23) . (0, 0, 1)

1+ 8;h(@71)
= vie; + ne;.
Then the equation 7,050 + j(v)my,0:v = 0 is equivalent to
Osx-ey+ 0sy-e2+j(x,y,2)(0rx - e; + 0ry - €2) = 0.
With
J(x,y,2)er = myy(x, y, z)er + miz(x, y, z)es,

J(x,y,2)e2 = ma(x,y,z)er + may(x, y,2)e;
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and defining M(x, y, z) := (mu mzl) (x, y,z), We obtain

my2 my

6sx 6,x)
+ M(x,y,z =0.
<6sy> Gy )(c%y

Summarizing, & = (b, x,y,z) = (b,v): [s, ) x [0, T] — R x R? satisfies the fol-
lowing:

(1) 3sb — Aa(0)dw = O,

(2) 9b + A2(0)00 = 0,

(3) (33) +M(x,,2)(%) =0,

@) v(s,.) — xo in C*([0, T],R?) as s — oo, which implies

§—00

3:b(s,t) =5 0

§— 00

dsh(s, 1) =5 1

in C*([0, T],R?),
(5) v(s,0)eR-(1,0,0) and (s, T) e R- (0,1,0) + (0,0, T).
Since j is compatible with dA;, M has to satisfy
@ MTJM = Jowith o= (2 3'),
(b) —JoM > 0.
We derive first an exponential decay estimate for the components { = (x, y) of
v transversal to the orbit x¢ and to their derivatives. We write

0 = 05{(s,t) + M({(s, 1), 2(s,t))0:L(s, 1)

(6)
= 05C(s,t) + M(v(s,t))0:((s, t).
We consider the following family of inner products on L2([0, T], R?):
T
(ug,u), := L uy(t), —JoM (v(s, t))ua(t) ) dt. 7

We define

| - | u(0) e R - (1,0)
W %([0, T],R?) := {u eWHOTLRY| 1) R (0,1) }

where we use the inner products (7) to define

(u, U)s,l,z = (u, v)s + (uls U,)s‘
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We know that the matrices M(v(s,t)) converge to M(0,0,t) as s — co uniformly
in t. In particular, there is a positive constant C so that

|(=M(o(s,)J0)/*], [(~JoM (v(s,))*| < €
for all (s,t) € [so, ) x [0, T]. Therefore the L2-norms induced by the inner

products (7) are equivalent to the ordinary L2-norm || . ||, and we have an esti-
mate

1
Cllullpz > (w,u),* > & lullze

with some constant C > 0 not depending on s. We prefer to use (7) instead of the
ordinary L2-product since it is better adapted to our problem, as we will soon
see.

Define the following family of unbounded linear operators

A(s) : L*([0, T],R?) = W-*([0, T], R?) — L2([0, T], R?)
(A(s) - w)(£) 1= —M(o(s, 1))iK(e).
Then (6) can be written as ({(s) := {(s,.))
3L(s)(t) = (A(s) - £(9))(®)- 8)

We state some basic properties of A(s).

PROPOSITION 3.4. (1) A(s) is a selfadjoint operator on (L*([0, T],R?), (-,"),).

(2) Ker A(s) = {0}.

(3) There is a constant 6 >0, not depending on s, so that for all
y€e er'z([O, T],R?) and s € [so, 0),

1 A(s) - 7lls = élivl;-

(In the following, we write || . ||, :== (., .)i/z.)

Proof. First we note that A(s) is densely defined since CZ([0, T],R?) is
contained in W;2([0, T],R?) and is dense in L%([0, T],R?). We compute for
Ui, Uy € WI-I’Z([O, T],R?):

T
(A(s)u1, u2)s = JO <=M (v(s, 1))inr(2), —JoM (v(s, 1) )uz(t) > dt

T
- j | Cn(e), Jowa(0) de
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t=T T
= [Cu(t), Joua ()] —y — Jo Cuy(t), Jota () dt
T
= Jo <Jou1 (t), flz(t)> dt

T
- jo CCA(S) - 1) (£), MT (o(s, 1)) Jour (1) dt

= (u1, A(s)u2),-
Hence we have shown that A(s) is symmetric, and therefore the adjoint operator
A*(s) is an extension of A(s). We have to prove that its domain of definition
D(A*(s)) is actually contained in er’z([O, T],R?). We have y e D(4*(s)) if and
only if there is some y* € L([0, T], R?) so that
(A(s)x,¥), = (x,y*), for all x e W *([0, T],R?).
Now let y € D(4*(s)). If x e CP ([0, T], R?), then
(%, Joy) 2 = (A(9)x, ),
= (%,5");
= (%, =JoM(v(s))y") 2-

Hence y has weak derivative M(v(s))y* € L%([0, T],R?), that is, ye
W12([0, T],R?). By the Sobolev multiplication theorem, the function

() := <x(t), =Joy(t)>

is also in W'2([0,T],R?) for any xe W*([0,T],R?); and because of the
Sobolev embedding theorem, ¢ is even continuous. Therefore

<x(T)’ _JOy(T)> - <x(0)’ _JOy(0)>

T

Jo
T
- j CG(t), ~Joy(t)> dt + j Cxt), —Joj (1) de
0 0
0
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If we pick now some xe Wi ?([0,T],R?) that satisfies x(0) = (0,0) and
x(T) # (0,0), we conclude that y(T)eR-(0,1). Similarly, we get y(0)e
mR - (1,0) and we have shown y € D(A(s)), so that A(s) is selfadjoint.

Property (2) of Proposition 3.4 holds because there are no constant nonzero
paths in er’z([O, T],R?). Assume now that (3) is false. Then for each sequence
Or \\ 0, there are sequences (y;) S er’z([O, T],R?) and (si) < [s0, 0) so that

4(sk) - viells, < OxllPelly,-
Defining ay := y,/||7ll, € W2([0, T], R?), we obtain

léellLe < Clldlly, = CllA(se)oully, < Cox ™\ 0

llowll 2 < Cllawlls, = €

1 1
lloellzz > & lloells, = & > O-

Since the inclusion W12([0, T],R?) — L2([0, T],R?) is compact, we may pass to
some subsequence (which we still denote by (o)) that converges in L? to some
a e L2([0, T],R?). Then (o) converges in W'? to « and & = 0, so o must be con-
stant. Recalling that a4 € er'z([O, Tl, R?) and that W% is a closed subspace of
Ww12([0, T],R?), we obtain a e er’ ([0, T],R?) as well; therefore, & = 0 which
contradicts

1

“ak“L2 = E > 0)

and we are done. O

For fixed I’ e N and {(s) € WFIU'2 2([0, T], R?), we introduce the column vector

.
W(s) = (c(sx;%c(s), . ,ggm) .

We note that each component of W(s) satisfies the boundary conditions

k k

(s,0)eR-(1,0) and (5,T)eR-(0,1).

0
Frid Frid

Hence we can view W(s) as an element in Wrz’z([O, T],R2'+D),
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Applying 6:‘ = 6"/ ds* to our differential equation (8) (with k > 1), we get
k

k
0s(95L())(r) = (A(s) - 95¢(s))(®) + Y ( ; ) 0y(=M(v(s,1)))3:(857'(s, 1)

=1

k
=: (A(s) - BKL() () + D Auls, 1) - 3,(857¢(s, 1)).
=1

If we put
(M(v(s, 1) 0 ... 0 \
0 .
M(v(s, 1)) :=
: 0
\ 0 ... 0 M(s0)/

= diag(M(v(s, t)),. .., M(v(s, t))),

A(S) = ~M(ols, ) 5

(0O 0 0 e 0)
All(sa t) 0 0
A(s,t) := | An(st)  An(s?) 0 ,
\Am:(s, t) Av_ipr(s,t) Av—ap(s,t) -+ Agyp(s,t) 0)

then we obtain an equation for W (s):

OsW(s) = A(s) - W(s) + A(s, .)a. W (s). 9)

Remark. Let us emphasize a tiny detall that becomes extremely important
later: Although W(s) contains derivatives 6 { up to order k =1', the express1on

Ags, .)0:W (s) only contains s-derivatives up to order I’ — 1 because 6 '¢ appears
already in A(s) - W(s).
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We define the nonnegative function

T
o6) =5 IWGIE =3 | W0, ~Jobt(o(s, )W (s, 0>t

where Jy = diag(Jo, ..., Jo). Then

T
g'(s) = (0:W(s), W(s)), +%J0 (W (s,t), —JodsM(v(s, t)) W(s, t) > dt
and

g"(s) = (0ssW(s), W(s)), + 19:W ()13

+2 JZ (B W (s, 1), —Jods[M (v(s, £))|W (s,t) > dt

+ % JT KW (s, 1), —Jodss[M(v(s, 1)) W (s, 1) > dt
0

=Ti+Th+T+T

2T+ L+ T
Note. In the following, we write &(s) for a positive function that converges to
zero as s — o0, if it does not matter what &(s) actually is. We also denote positive
constants by c if the size of the constant is not important.
We estimate T3 and T; as follows, with || . ||, being the ordinary L2-norm:
IT3| < e(s)l|0sW ()] L2 | W (s)l .2
< &()(1 + A M (0(5)) oo, ) IIA(S) - WS)lI2 MW (3) 2
< &(s)|1A(s) - W)W ()l
|Ta] < &(s)|W(s)IIZ2
<e@IWEI;.

We obtain this from the fact that v(s, t) — (0,0, t). This implies also

|AGs, 1)1, 10:A¢s, 1) — 0 (10)

as s — oo uniformly in ¢.
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Now we estimate T;. We calculate

dssW (s) = —05[M(v(s))]0: W (s) + A(s) - 0, W (s)
+ 8A(5)0, W (s) + A(5)ds W (s)
and
(@55 W (5), W(s))s = (=05[M(u(s))|M (u(s)) (A(s) - W(s)), W(s)),
+ (A(s) - 0, W (s), W(9)),
+ (0A(5)0:W (s), W (5)), + (A(5)05 W (5), W (s)),
=T+T+T+Th
We begin with T5:
T3] < e(s)II1A(s) - W)W (s)ll,-
Then
Ty = (A(s) - 0, (), W(s)),
= (8;W(s), A(s) - W(s)), (by Proposition 3.4)
= || A(s) - W(s)ll; + (A(s)0: W (), As) - W (s)),
= [|A(s) - W7 + (A(s) M (v(s))(A(s) - W(5)), A(s) - W(3)),

> ||A(s) - W(s)IF = e()IAls) - W)l

N =

> 3 I4(s) - W),
if s is chosen large enough. Next

B < 1A M(o()(A(s) - W(s)), W(s))l

<e(s)As) - WE)LIW ),

271
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We are left with T;. Putting

0 0 0 A 0
0 Au(st) 0 . 0
As,t) = 0 Axn(s,t) Ap(s,t) ... 0 ,
0 Ap’p.(s, t) Alr_l,;/(s, t) .. Alyp‘(s, t)
we see that
A(s)8. W (s) = A(s)2.W (s) = A(s)M(v(s))(A(s) - W(s)). (11)

Remark. 1t is not a mistake that the derivative 6;’“( seems to disappear in
the above equation. The reason for this “miracle” is simply that 6§ *+1¢ is not even
contained in the left-hand side of (11); see also the remark after equation (9).

Therefore

1Tl < |(AGs, )0 W (s), W(s))s|
< &(s)|4(s) - W IW ()l

Summarizing, we finally get

§"(s) > 1A(s) - W) =~ e IA(s) - WELIW ),
=140 WL (3146 WO, - 17O,

> (30 146 - WL,

by Proposition 3.4. The term in the bracket is always larger than d/4 if s is suffi-
ciently large; hence

62 ) 52
§'() > SIWEIE =50 (12)
using Proposition 3.4 again. Because we can estimate ||. ||, from above by the
ordinary L2-norm and |0¥(s, .)| — 0 in C°([0, T],R?) as s — oo, we conclude
that

0<g(s)—>0 ass—0.
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Then (12) implies

9(s) < g(s0)e™ VD) for all s > 5o (13)

if sp is chosen large enough. Inequality (13) implies that for some suitable sy and
each k e N, there is a constant ¢, > 0 so that

195C(s)ll2 < cxe™ Vs = so, (14)

where r = 3//2.
We estimate with suitable ¢ > 0, 0 < ¢(s) — 0 using (10):

oW (s)lly = () - W(s)ll
< 18w (s)]s + 1A(s)a: W ()l
< ce ™+ g(s)]|0:W ()],
Hence
10:0¢(s)]| 2 < che™  for s = s

with some constants ¢, and k > 0. Using 9,{(s,t) = M(v(s,t))d{(s,t), we com-
pute for k,m > 1,

k m
oML (s, 1) = Y (™) ak-mam-i (s, 1)) - a0 (s, ).
n )\ 1

Inductively, we get estimates
10%L(s)l L2 < cue™  for s > sp,

where o = (a;,0) e N> and 0 = (9/0s)™(d/0t). Applying the Sobolev
embedding theorem, we obtain, finally,

—=rs

10°8(8) | oo, 7,R?) < Cal™™ Vs 2> s0.

We use this estimate now to derive also exponential decay estimates for
0%(z(s,t) — t) and 0%(b(s,t) — bp — s), which completes the proof of our theorem.
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Let us study equations (1) and (2) now:

1
0=20sb —ma,z —¢1(v)0x — ¢2(v)dyy,

0 =1(v)d:b + 85z + 1 (v)e1 (v)d5x + f (v)c2(v) sy

Recalling that f(0,0,z) = 1, we may write

1
fo(s,t)) =1+ Jo df (6{(s,t), z(s,t)) - {(s,t) do =: 1 + Fy(s,t) - {(s,¢)

and

1 —_—
fl(st)

=: 14 Fy(s,t) - {(s,t).

1
1+ jo — (625, 1), 2(5, 1)) df (65, 1), 2(5,8)) - (5, 1) do

We obtain the following equation:

asw + Joatw = h?

e = (o) = (2007

Here Jo = (2 ') and

where

hs, 1) = 0:z(F3 - {) + ¢1(v)0;x + ¢2(v) sy (5.1
T\ =ab(F1-0) = (14 Fr - O)[er(0) f(0)8sx + c2(v) f(0)05y] )

We know already that there are constants sp € R; ¢/,r > 0 so that
1£(s, oo, 12 19588, -)leogo, 79y 18:L (s, oo,y < €™

if s = so, while the other expressions involved in the definition of h remain
bounded if s — co. Hence

h(s, leoqo,rr) < ce™

if s > sp, where ¢ > 0 is a suitable constant. By the same reasoning, all deriva-
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tives 0*h of h also satisfy an estimate as above with some constant c, > 0

depending on a.
We fix some number I’ € N and introduce the column vectors

V.=B+iZ:= (W1 + iwg, Oswq + i0swa, . . ., ai'wl + ia£,W2),
= (h,dsh,...,0"h).

Then
oV +io,V=H,

where i = diag(Jy, ..., Jo), and H satisfies
|0*H (s)|co0,77) < Core™

for s > s, where o € N? is some multi-index and ¢, v > 01is a constant.
Moreover, we have the following boundary condition:

Z(5,0)=Z(s,T)=0
Writing H = Hy + iH,, we obtain
0sB — 0,Z = Hy
and

T T
J asB(s,t)dt=J H;(s,t) dt,
0 0

hence

T
J 0sB(s,t) dt‘ <ce ™.
0

We estimate

JT B(sy,t )dt—J: sl,t)dt’

0

J 0sB(o,t) dtdo

)
<,

J 0sB(o,t)dt|d

<

h N eY

—rs1 __ ,—TS2
(e e ™).
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Hence fOT B(s,t)dt — By for a suitable ByeR'*! as s— co. Considering
B(s,t) — (Bo/T) instead of B(s,t), we may assume that the mean value

foT B(s, t) dt of B converges to zero for s — co.
Taking the limit s, — oo in (15), we get

T c
J B(s, t) dt' < -e ™.
0 r

We define now

_ 1 (T
V@Q:V@O—TLB@Qm

1 T
=B@0—?LB@0w+z@ﬁ

If we succeed in getting exponential decay estimates for ¥, then we also have
them for V since the mean value of the real part B decays already exponentially,
as we saw above.

V satisfies the differential equation

T
asV+ia,17=Hl-H Hydt+iH, = H, +if, = A,
0

where H still decays like e™™. The real part B of ¥ has mean value zero with
respect to t, and the imaginary part vanishes on [so, 00) x {0, T'}.
We begin with the following lemma.

LEMMA 3.5. Assume v: [so, ) X [0, T] = C¥ ~ R? is bounded and solves
(a) oOsv+idw=H
with
(b) [H(8)|coo,ryy < ce™™ (r,¢>0)
and
(©) 8:(s,.) — 0in C°([0,T]) as s — 0.
Ifv= v¥+ i vy, we further assume
(d) _[() Ul(sa t) dt = 07
(e) v2(5,0) = vy(s,T) = 0.
Then

[ee] [e o]
J e2ﬂ5||v(s)||{zds<J e%||8,0(s) |22 ds < oo (16)

50 50

for all 0 < p < min{r/2,1/T}.
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Proof. We have the following simple pointwise identities for a function
f: C — C (identifying C with R? via z = s + it — (s, 1)):
(1) d/ds{f,i0.f> — d/dtf,idsf ) = 2{0sf,i0.f ),

(2) 106f +10cf1* = 0ef " + 2f | + 205,100 .
First, we show that s — ||v(s)[| 2, 7)) 1s in L?([so, 00)). We take

t
v1(s, 1) — v1(s, ') = J ov1(s,7) dr

t

and integrate with respect to ¢':

1 T pt
vi(s,t) = TJO L o101 (s, 7) drdt’.

This implies
1 T ¢T
mol< 1| | oG oldar
T )o Jo

T

=J |0:v1 (s, )| dT
0

< T%)|901(s) | -

On the other hand,

t
vy(s,t) = J 0v(s, ) dr,
0
hence

T
loa(s,1)] < jo 1Bwa(s, B)| dt < TV 0,02(5)| 2,

and therefore

lo(s)lI72 = llos ()72 + llo2() 172 < T2 ev(s)]|22- (17)
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We estimate

s rS
L b < 72| 1ot
S0 Jso

rS
< T?| (Jl6w(s") 1 Z> + 1850(s))II72) ds’
Jso

rS
=T2| |[H(s)||?. ds'
Jso

o2 J (@s0(s"), i00(s')) 12 ds'
So
= 72| H) I a8
s
s T d
—TZJ J — (s, t),id0(s', 1) > dr ds’
40 ds

s T
o1 [T S s oy avas
= 72 [ IH)IE dS + To(s), (o)
So
— T?(v(s), i0,0(s)) -

We have used

T
J %(v(s’, t),idsv(s’, b))y dt = {v(s', T),idsv(s’, T)) — <v(s',0), id50(s",0) ).
0

The right-hand side is equal to zero because we know that
05| [5y, c0)x{0,T} S RY = C¥ in view of the boundary condition. Finally,

|(v(s), id:v(s)) 2| < const - ||d;v(s)||2 — O

as s — 00, so we get in the limit s — oo:

0 [o o]
jleéa<ﬁjnmmmk+ﬂmmﬁmmM<w-
So S0

v,
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For n > s, we pick functions y,: [0, ©0) — [0, 00) with

ya(s)=s for0<s<n,
yo(s) =const fors=n+1,
0<y(s)<1 forall0<s< ooasn— oo,
n(s) /8.
Define
(s, 1) := e Op(s,1).
Then also ||lva(s)|| € L?([s0, 0)), 8:vn(s,t) — O as s — oo uniformly in ¢, the real
part of v, has mean value zero, and the imaginary part vanishes on

[S0, 0) x {0, T}.
We compute

Osvy + 10,0, = py, v + e/ d5v + ie v
= pysvn + €’ H.

As before, we can estimate

e 2 ® 2
j uvn(s)uudssTZj 10n(s)]1 22 ds
So So
< T? * / PO H 2 d
< T2 1p7s(5)oms) + " OH(s)| 2 ds
S0

+ T*(va(50), i0:0n(50)) 2

-1 jw P0(5)) l1on() |2 ds

So

o0
+ TZJ O | H(s)|| 2. ds
So

12 [ ), )

+ T2e27(%) (y(sp), i0:0(50)) 2.
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Recalling that |H(s)||2, < ¢2Te~2%, we obtain
[ oz as < 72 [ o1 s

<7 ZJ lloa(s) 122 dS+c2T3j 2015 g
So

00
+ 6T5/2pj e#713 ds + T2e?% (v(sp), i0,0(s50)) 1.2,
S0

and therefore

J e ds < 72 ool

0
< T3 on(9)lR ds-+ M,
S0

with some number M > 0 not depending on n. Since p < T, this implies

M
[ e ds < =z <
and

jummma Tﬂlmmm@w
So

14+ T?%p?
<SM——

l__T2p2
< 00.

In the limit as n — oo, we finally get

o0
| e o1z-ds < 72 e ants)R ds < oo,
S0

So

which completes the proof of Lemma 3.5.

Applying this to ¥, we find

© 0
J |V (s)|% ds<TZJ e¥5)10,7(s)||22 ds < 0
o S0
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whenever 0 < p < min{T~!,r/2}. Now we want to show that for each ¢ > 0,
there is a sequence sy — o0 with sgy; — sk < J so that e”*V (s, t) converges to

zero as k — oo uniformly in t. Pick 6 > 0 and define the following intervals for
k=1

1 1
Ik = [So +'2-6(k - 1),80 +§k5} .
Then

J eV (s)|3.ds and J |0,V ()2 ds
I

Iy
must converge to zero as k — oo in view of

]

0
S| 07O ds= | e Iarol:ds < o
k

k=191 S0

and

j e2ﬂ5||17(s)||izds<T2J 53,7 (5)|I2 ds.

I I

Recall that |I7(s)|co([0’ﬂ) converges to zero as s — 0, so ||V (s)|| L2(o,7)) depends
continuously on s. If we take

si 1= min(e**[16, 7 (s)II72),
sel
then s, — 00, Sg41 — Sk < J, and, in view of (17),
25|V (si)|[Z2 < T2 - ™[]0,V (se) |72
T? —
< ——J %10,V (s)| 12, ds
5 )i

— 0 ask— oo.

The Sobolev embedding theorem provides an estimate

[V (se)l oo,y < UV (silz + 18V (sid)l2)
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with some constant ¢ > 0 not depending on k. Hence
ezps"|17(sk)|c°([o,7‘]) -0

ask— 0. _
If we split ¥ into real part B and imaginary part Z, we have

k—
"*|Z(sk)| o o, 77y —— O-

Then the differential equation for V is
0sB — 6,Z = Hy,
0:B+ 0,Z = H,,
Z(s,0)=Z(s,T) =0,
which implies AZ = ,H, — 0,H, =: I:I, where |ﬁ | decays like const-e™™ as

s — 0.
Define now

o(s,t) := e’ Z(s,t).

Then

Ag(s,t) = e AZ(s,t) + 2pds0(s, t) — p2o(s, t)

= e*H(s,t) + 2pd0(s,t) — p*o(s, ).
We compute with (s, t) := |o(s, £)|*:
AY (s, 1) = 2(s0(s, DI + 200e9(s,8)|” + 2p(s,1), Ap(s, 1))
= 2|0,0(s,0)* + 2|00 (s, 1) > + 2%°¢Z(s, 1), H (s, 1))
+2p<0(s, 1), 0s0(s, 1) — 2p* (s, 1).
Hence
AY + 292 > 2|0,9|"—2ce® 7 — 2p|g| 8,0

> 2|950~2ce®"% — p2|p|*—|o,p|*
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and
AY + 3pH = —2ce®5 = f(5).

Note that f(s) —» 0 as s— oo since p <r/2. Recall that y >0, y(s,0) =
VU(s,T) =0, and Y(sx,t) — O uniformly in ¢ for some sequence s, — oo with
Sk+1 — Sk < 0, where > 0 can be chosen arbitrarily small.

Let Qj := [sk, Sk41] X [0, T]. Our aim is to derive a bound Y|, < C that does
not depend on k, and is therefore valid for the whole strip [sp, 00) x [0, T].
Unfortunately, the maximum principle cannot be applied directly because 3p?
has the wrong sign. However, there are still bounds if Q; is sufficiently slim, that
is, if 4 is chosen sufficiently small.

Define on ,

vk(s, 1) := sup + (¢ — ") (3/’2 supy + 2ce® Jm) >0
o Q
since Y = 0 and 5 — s; < Sg1 — Sk < 0. We have
Avi(s,t) = —e"% (3,02 supy + 2ce(2”“’)s°)
Q
< -3p2 supy — 2cel2")%

Q

and
Aok — ¥) < 3p? ('/, — sup 1//) + 2c(e®s — e(p)s0)
Q

<0.

On the boundary 0Q;, we have
v — Y =supy — !//|an + (e‘; — 5% (3p2 sup Y + 2ce(2”_’)s°)
o Q
= 0.

By the weak maximum principle (see [3]), we conclude

inf(ox — ¥) = inf(or — ) >
inf(v — V) = inf(v —¥) > 0
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and therefore
Y(s,t) < supy + (e — e*%) (3/72 supy + 2ce(2”")s°) ,
o Q
which implies, by taking the supremum on both sides,
supy < supy + (¢ — 1) (.’»p2 supy + 20e(2”")s°> )
Q aQ Q
If we choose now & < log(1 + 1/3p?), then
supy < 1 (supdl + 2¢(e® — l)e(z"")‘*’)
I C\ aq,

with C = 1 — 3p%(e’ — 1) > 0.
In view of the boundary condition on ¥/, , we see that Y| is bounded by a
constant ¢ that does not depend on k, hence

sup e”|Z(s,t)| < c < .
(s,t) € [s0,00) %[0, T]

Since the integer !’ involved in the definition of Z = (wz,aswz,...,afv_vz) was
arbitrary, we also have a bound for e”|0;Z(s,t)|. Because of &B(s,t) =
Hj(s,t) — 0;Z(s,t), we can estimate

|0:B(s,t)| < ce™*".

Consider now

B(s,t) — B(s,t') = Jt 0,B(s, ) dr.

Integrating over [0, T] with respect to ¢’ and using the fact that B has mean value
zero, we arrive at

T

t
B(s,t) = J J 0,B(s,t)dvdt’,
tl

0

which implies

T (T
|B(s,t)| < J j |0.B(s,7)| drdt’ < cT?e™*5.
0Jo
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Combining this with the estimate on the mean value of B, we have shown that
|B(s, t)| < const - e 5.

Summarizing, we have shown exponential decay as s — oo for afw, where
k>0 and w(s,t) = (b(s,t) — s — b, z(s,t) — t) with some suitable real constant
bo. Recalling that 6,V =i (6;V — H), we also obtain exponential decay estimates
for 0,V, which implies estimates for each 6,6£‘w (k = 0). Inductively, we get,
finally, exponential decay of 6:V for each I > 0, which proves Theorem 3.3. []

3.3. A representation formula. We recall from the preceding section that the
equation for the finite energy strip

5= (b,v) = (b;{,2) : [s0,0) x [0,T] - R xR? xR

looks as follows:

® 0sb— h(v)ow=0

® 0tb+ A (v)dsp =0

o 0L+ M({,2)aL =0,
provided sy is sufficiently large. Moreover, we have shown that v(s, . ) converges
to the characteristic chord xo(t) = (0,0,¢) in C®([0, T],R?) as s — oo, and the
convergence is of exponential nature.

The map v satisfies the boundary conditions

v(s,0) eR-(1,0,0)
v(s,T)eR-(0,1,0) + (0,0, T),

and the matrix-valued function M satisfies

0 -1
MTJM = J, withJo=(+1 0):::‘

and
—JoM > 0.
In this section, we want to derive an asymptotic formula for the component {

of v transversal to the characteristic chord xo. We define an unbounded linear
operator

Ay : L([0, T],R?) > W2([0, T],R?) — L([0, T],R?)
by

(Ao - 7)(t) == =Moo (1)7(2),
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where we abbreviate M (t) := M(0,0,¢). Our main result is the following
theorem.

THEOREM 3.6. If { does not vanish identically, we have the following asymp-
totic formula:

Us,t) = elo ™ et) 4+ r(s, 1),

where
s c€ er‘z([O, T],R?) is an eigenvector of A« corresponding to some eigenvalue
A <0 (here L%([0,T),R?) with the equivalent inner product (.,.)=
jOT (., =JoMy(t).>dt), and Ay, is selfadjoint;
® o : [sg,0) — R is a smooth function satisfying a(s) — 4 as s — oo;
o r:[s0,) x [0, T] = R? is a smooth map with

|0%r(s,t)] — O

as s — oo uniformly in t and a € N? is some multi-index (recall that by con-
vention 0 e N).

The proof of this theorem occupies the rest of this section. We consider again
the following inner products on L2([0, T], R?):

T
(19), = [ <ult), ~JoM(C(5, ), 2(5,0)0(0) .

The corresponding norms are denoted by || . ||,, while we use the subscript L? for
the ordinary L2-norm (or inner product). We saw earlier that these norms are
indeed equivalent to the ordinary L?-norm, and we even have an estimate

1
¢ e <l < €l s

with a positive constant C not depending on s. In this section, it is useful
to view smooth maps  : [so, ) x [0, T] — R? as sections in the trivial vector
bundle E := ([so, 00) x [0, T]) x R? over [sg, 0) x [0, T] and the family (s,t) —
(., —JoM({(s,t),2(s,t)) . > as a bundle metric. In contrast to [7], we cannot use
a bundle isomorphism E — E that transforms M(v(s,t)) into Jo:= (% ')
since this would destroy the boundary condition. So we have to follow a more
intrinsic approach. We choose a connection on E by introducing the following
covariant derivatives:

V(s ) = 8:L(s, 1) — %M(v(s, £)3[M(o(s, )] - £(s, 1),

Vil(5,0) 1= 8 (5,0) — 5 M(o(s D)AM (s, 1) - {5, 0):
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We abbreviate

i(s,) = =5 M(a(s, )M (a(s, )
and

Ta(s,t) = — %M(v(s, £))3,[M(u(s, 1))].

For vector fields X = a;(0/0s) + a2(0/0t), where ay,0, are smooth real-valued
functions on [sy, 0) x [0, T], we define Vx( := o, Vi{ + 2, V;{ and observe that

* Vx({1+ &) = Vx{i + Vx (s,

* Vx(fO =X(f)-{+f Vx(.

We compute for u;,u; € Wh2([so, 0) x [0, T],R?) with V being understood in
the weak sense:

T

%("17 up); = (Osur, uz); + (u1, Ost2) s + Jo Cur(t), —Jo0s[M (v(s, t))]uz(t)) dt

T
= (uy, Vst); + (Ostiy, uz) + %Jo <0s[MT (v(s, 1)) Jour (), uz(t) » dt

1 T

= (uy, Vsttz); + (Osur, u2), + —2—J0 {=Jo0s[M(v(s, t))]us(t), ua(t) > dt

= (u1, Vsup), + (Vsur, ua),.
If B is a section in the endomorphism bundle End(E) = ([so, o0) x [0, T]) x
End(R?), then we can define a covariant derivative V,B by

1

VB := 0;B + 3 [B- M(v)ds(M(v)) — M(v)ds(M(v)) - B,
so that V¢(B-{)=VB-{+B-Vs{. We note that V;M(v)=0 and
0:Vl(s,t) — V50:L(s,t) = 0,T1(s,t) - {(s,t). We need the following resuit.

THEOREM 3.7. Let T : H > D(T) — H be a selfadjoint operator in a Hilbert
space H, and let Ay : H — H be a linear, bounded, and symmetric operator. Then
the following holds:

e dist(a(T),a(T + Ag))

= max{ sup dist(4,0(T + Ap)), sup dist(/l,a(T))}
Aea(T) Aea(T+Ao)

< |l 4ol s
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e assume further that the resolvent (T — /10)'1 of T exists and is compact for
some Ay ¢ o(T).
Then (T — A~ is compact for every A¢ a(T), and o(T) consists of isolated
eigenvalues {1} .z with finite multiplicities {my}; .

If we assume that sup, .z my < M < oo and that for each L > O there is a num-
ber mr(L) € N so that every interval I = R of length L contains at most mr(L)
points of 6(T) (counted with multiplicity), then for each L > 0 there is also a
number mr4,(L) € N so that every interval I = R of length L contains at most
mr44,(L) points of o(T + Ayp).

Proof. It is sufficient to prove that

sup dist(4,0(T)) < Aol (a),
Aea(T+4o)

because T + Ay is also selfadjoint. We pick A with dist(4,0(T')) > ||4ol| &), and

we want to show that A ¢ o(T + Ao).
We write

T+ Ag — A= [Id + Ao(T — 2)~'(T - A).

This is invertible with bounded inverse if and only if (Id + Ao(T — A)™")™" exists
and is in Z(H). If ||Ao(T — ’1)_1”3’(11) < 1, then the Neumann series

Id + i(Ao(T —A)7H
k=1

converges in #(H) to an inverse of Id + Ao(T — )L But

140(T = 2) ™[l oqary < 4ol eI (T = )~ Ml o

1
= lollew g o)

<1

since T is selfadjoint, which proves the first part of the theorem. By the spectral
mapping theorem, the function

R\{%} — R

A—4o
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maps o(T) onto o((T — /10)_1). Since the resolvent (T — Jy)~! is compact,
a((T — 4)~") is a countable set with no accumulation points different from zero.
Moreover, each nonzero A € a((T — A)™") is an eigenvalue of (T — Ay)~" with
finite multiplicity (see [11, III, 6.7, Theorem 6.29]). It follows that the spectrum of
T is a countable set {4}, .z of isolated points and that each y;, € (T) is an eigen-
value of T with the same multiplicity as (g, — 4) ' € 6((T — 4)~"). We assume
further that all the multiplicities of the eigenvalues y, are bounded by some
positive constant M. We consider the following family of selfadjoint operators:

T(k) :=T+xkAy, ke[-¢l+¢, &>0.

We use the following theorem (for a proof, see [11, VII, 3.5., Theorem 3.9]).

THEOREM 3.8. Let T(x) : H> D — H be a holomorphic family of selfadjoint
operators in a Hilbert space H with domain of definition D so that each T (k) has a
compact resolvent (k € [—¢, 1 + g]).

Then there are analytic functions p, : [0,1] — R and ¢, : [0,1] — H for each
ne€ Z so that u,(k) represent the repeated eigenvalues of T (k) and the ¢,(k) form
a complete orthonormal family of the associated eigenvectors of T (k).

Remark. The term “holomorphic family” above means that for each u € D,
we can expand T(x)u in a convergent Taylor series so that the convergence
radius does not depend on u.

We can apply the above theorem since all the operators T(x) have compact
resolvent. Using the selfadjointness of T(x) and (¢, (x), ¢,(x)) = 1, we see that

Hn(K) = (T (1), (16), 95 (x))

and
Hn(K) = (Aogy (1), @a(K)) + 2(T(x)pn(x), ¢, (1))
= (409,(K), 9, (x)).
Hence
| ()| < 1 Aol gy

and therefore

(1) = 1, (0)] < | Aol (s -

Now let I = [a,b] = R be any interval of length L. Then
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mria,(L) :=|[{ne Z|u,(1) e I}|
<|{neZip,(0)er'}|

=mr(L+ 2| 4ol ¢ (&)

where I’ = [a — || Aol (), b + [l Aoll ()] This completes the proof of Theorem
3.7. g

LeMMA 3.9. If{ does not vanish identically, then we have for s > s,

1), = ko O F (sl

where o : [sp, 00) — R is a smooth function satisfying a(s) — 4 < 0 as s — oo with
A being an eigenvalue of A.

Proof. It is a quite trivial matter to get the required formula. We just write
down the correct a. The difficulty is deriving the properties of « as stated in the
lemma.

Let us first assume that ||{(s)[|; # O for all s > so. The case where ||{(s)||, =0
for some s is treated later (this actually implies { = 0). Define

(s) i G/
201¢()I1;

Then ||{ (s)||§ satisfies the differential equation

%Mwmzmwmwm

by definition. But the same differential equation is also solved by

F(s) = e " (so)] 2,

which implies F(s) = ||¢(s)]|.
We introduce now

_L(s,0)
€80 = el




We have

and

so that
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0:{(s,1)
O]

até(s, t) =

Al(s,t)  Us,t) d
IEOT;  201¢(s)|? ds

0sE(s,1) = IE(s))12

0= Vs&(s, t) + M(L(s,t), z(s, 1)) 0:L(s, t)

—Ti(s, 1) - E(s, t) + a(s) &(s, ).

Differentiating ||&(s)||> = 1, we obtain

Taking the L2-product with &(s), we derive the following from equation (18):

(Vs&(s),&(s)), = 0.

a(s) = (=M (v(s))0:£(s), £(5))s + (T1(s) - €(5), ()5

We conclude that

Inserting

o' (s) = (=Vs[M(0())2:&(9)), £(9)); + (=M (0())9:£(5), VsS(5))s

+ (Vs[T1()E(5)], £(9)s + (T1(8)E(s), V()

= (=M(v(5))8:V:&(s), £(5)); + (M(v(5) 0T 1(5)€(5), £(5))s

+ (A(s) - &(5), Vs&(9)); + ([VsT1(9)1E(s), £(5))s
+2(T1(s)&(s), Vs&(5))s
= 2(A(s) - &(5), V& (5)), + 2 (T1(5)¢(s), Vs&(5));

+ (M(v(s))aT1 (5)&(s), £(5))s + ((VsT1())E(5), £(5))s-

A(s) - E(s) = a(s)E(s) + Vs&(s) — T'1(s)E(s),

297

(18)



298 C. ABBAS

we obtain
@(s) = 2[|VE(S)II? + (M(2(5))a:T1(5)&(s), &(5)); + ([VsT1(5)IE(s), &(5)),
> 2| Vs&(s)|2 — (), (19)
where 0 < ¢(s) — 0 as s — oo because |6,';(s,t)| and |V,['i(s,t)| converge to
zero uniformly in t for s — co.

Assume now that « is not bounded from above. Then we find a sequence
sx — oo with a(s;) — co. If we had a(s) = # for some # > 0 and all large s, then

1 1 -
K@) = Sl = Fe™ D50l == <0,

which is wrong by the convergence result, Theorem 3.1. Hence for each # > 0,
we can find a sequence s, — oo with a(s;) <#. Pick now n <4 with J as in
Proposition 3.4, and we may assume that a(si) > #. Now let § be the smallest
number satisfying §; > s, and a($;) = 7.

Then 7 cannot be an eigenvalue of any A(s) since, by Proposition 3.4,
LA(s)y = ml, > Al — 7llyll, > O for every 0 # y € W4*(0, T], R?). We con-
clude that

IVsE@)lls, = 1AGK) - €(8k) — m &SI, — 1T (i) - EGl,
2 (6 —n) — ClIT1(8c) - £(i)ll 2
27T
for some t > 0 since |['y(s,t)| — 0 as s — oo uniformly in ¢ and ||&(8k)|| .. < C for

all k. Inserting this into the estimate (19), and choosing k so large that &(5) < 72,
we obtain

o' (5) = 2 V@3, — &(Sk)
> 7? (20)
> 0.

Summarizing, we have
“(Sk) >n,
(8k) =1,

af(s) >n for all s € [sx, §k),
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but (20) implies a(s) < # for s < § close to §, which is a contradiction; hence o is
bounded from above.

Let us show now that « is also bounded from below. For this, we need some
information about the spectrum of the operators

A(s) + Ti(s) : L2([0, T],R?) o W*([0, T], R?) — L*([0, T], R?),

((A(s) + T1(5)) O)(1) = =M (v(s,1))8:&(s, 1) + T (s, 2) - £(s, 1)

Let us investigate A(s) first.
Define the matrices

T(s,t) o= (=JoM(v(s,1)))"%,
T (£) := (—JoMo (£)) /2.

Then T and T, are symmetric and symplectic since this applies to —JoM.
Therefore

T(s,)M(v(s, 1)) = JoT (s, )
and, similarly,
Too ()Mo (2) = Jo Teo (1)
A straightforward calculation shows that the maps
@, : (L*([0, T}, R?), (., .);) = (L*([0, T, R?), (-, .)p2)
y=T(s, )y,
@, : (L*([0, T, R?), (-, .)) = (L*(10, T],R?), (-, .)L2)
y = To()y

are isometries. They map er‘z([O, T],R?) onto

W20, T], R?) := {y e W12((0, T}, R?)

y(0) e R - T(s,0) - (1,0)

and

W2 ([0, T], R?) == {y e Wh2([0, T],R?)

7(0) e R - T, (0) - (1,0) }
NT)eR-To(T) - (0,1) J
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respectively. We consider the operators
A(s) : L*([0, T], R?) = W%([0, T],R?) — L2([0, T}, R?),
A(s) := @50 A(s) 0 @1,
Ao+ LX([0, T}, R?) > W 2((0, T, R?) — L¥([0, T], R?),
Ay =D 0 A 0 B!,

where we equip L?([0, T],R?) with the ordinary L’-inner product (.,.),.
Unitary equivalent selfadjoint operators have the same spectrum; hence

a(A(s)) = o(A(s))
and
0(Aw) = 0(Aw).

It remains to investigate the spectra of A(s) and A,. First we note that
the operators A(s) and A, are selfadjoint. We compute as follows for
ye ers’z([O, T],R?):

(A(s) - 1)(X) = =Joi(2) + Jod: T (s, ) T(s,1) "' 9(2)
=: =Joj(t) + S(s, 1)y(1).
We obtain in the same way, for y € W*([0, T], R?),
(Ao - 7)(8) = =Joi(t) + Jo Too (1) T (1) (2)
=: =Joj(t) + S (1) (1)
Moreover, since T is symmetric,
S(s) : L*([0, T),R?) — L*([0, T], R?)

(S(s) - 7)(8) == S(s,1)y(t)

is a linear, bounded, and symmetric operator, which is also the case for S,.
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Because v(s, t) — (0,0,¢t) in C*([0, T],R?), we have
S0 — S(S)| (220, 71,2 — O
as s — oo. It is still unpleasant that the operators A,, and A(s) all have different

domains of definition. Let us get rid of this problem.
For each s, we choose a smooth path

B;: [0, T] — SO(2) = O(2) n Sp(2)
with
° BS(O) T(S,O) : (1,0) eR- TOO(O) ' (1,0),
* B(T) T(s,T)-(0,1) eR- To(T) - (0, 1),
o By(t) — Id as s — oo uniformly in .
Then we get isometries

\PS : Lz([ov T],Rz) ':) Lz([oa T]st)
(¥s7)(t) == Bs(t)7(1),
mapping W *([0, T],R?) onto W"([0, T, R?). The operators
A(s) := W50 A(s) o P!

are also selfadjoint with domain of definition WI};Z([O, T],R?), and they satisfy
a(A(s)) = a(A(s)). We compute for y € W 2([0, T], R?):

(A(s) - 7)(8) = (A - 2)(2) + Als, £)(0),
where
A(s, 1) = [Bo(£)S(s, )B(£) " = So (£)] + JoBs(1)B(2)"
is a symmetric perturbation of A, with
|A(s, 2)| — 0

as s — oo uniformly in t.
Let us compute now the spectrum of the operator —Jo(d/dt) with domain of
definition Wl-lf([O, T],R?). Identifying R? with C, we write

R - T, (0) - (1,0) = Re,

R-T,(T)-(0,1) = Re*.
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Then we have to consider the operator —i(d/dt) acting on paths y: [0, T] — C
that satisfy the boundary condition

7(0) € Re™
»(T) € Re:.
The eigenvalues of —i(d/dt) are then given by

- kn
we= P

with k € Z, and the corresponding eigenfunctions are
yk(t) =q- ei(/‘kt+¢l), ae R’

and so the eigenvalues all have multiplicity 1. Moreover, the resolvent is compact.

So we have also shown that the spectrum of —Jy(d/dt) with domain of defini-
tion Wr %([0, T],R?) consists only of the eigenvalues {u}xcz that all have
multlpllclty 1, and the distance of two neighbouring eigenvalues equals 7/T.
Then by Theorem 3.7, we find for all L > 0 some m e N so that every interval
I = R of length L contains at most m points of the spectrum of 4,,. Moreover,

dist(c(Aw), 3(A(s))) — 0 (1)

as s — o0.
Define now the intervals

I,:=[-(n+1)L,—nL], neN.
Then each I, contains at most m points of 6(A ), so there is a closed subinterval
Jn < I, of length L/(m + 1) that does not contain any point of 6(A ). Because
of (21), there is a closed interval J;, < J,, < I,, of length L/2(m + 1) that does not
contain any point of o(A(s)) whenever s > s; where s; is sufficiently large (this s;

does not depend on n).
So we found a sequence r, — —oo and a positive constant d’, so that

[rn—d' ra+d' na(A(s)) =
for all large s. Replacing d’ by a smaller constant d, we still have

[t —d,rn+d] na(A(s) + T1(s)) =

for all large s.
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Recall the differential equation for &
(A(s) + T1(s)) - &(s) — a(s) - &(s) = VL (5).

If « were not to be bounded from below, then we could find a sequence s, — o
with a(s,) = r, and o/(s,) < 0. Since 4 + I'; is selfadjoint, we have the following
for any 6 in the resolvent set:

I(A(s) + Ti(s) = 6-1d) ||, = &ist(0 a(A(IS) )

We estimate

1= [[€(sa)lls, = I(A(sn) + Ti(sn) = 7 - 1d) "' V& (s,

< dist(ry, 6(A(sn) + rl(Sn)))_l”Vsé(Sn)”s,,

1
< IVl
and therefore

IVs&(sn)llp2 =7

for some suitable 7 > 0 and all n € N. Using the estimate (18) for «'(s), we con-
clude that

o(sy) =12>0
if n is large enough. This is in contradiction to our assumption, so a is also
bounded from below.

There exists a sequence sy — oo so that [|Vi(si)|l;, — 0. Otherwise, we have
for all large s,

IV&(s)lls =7 >0
with some suitable #. But then because of (18),
«(5)=n?>0
for s = sy (s1 sufficiently large) and
a(s) = n*(s — st) + als1)

so that ||{(s)||, — oo as s — co, which is not true.
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Because « is bounded, we can find a subsequence (which we also denote by
(sk)kGN) SO that

lim o(sx) = 4
k— o0

exists. We claim that Ae€o(ds). If we ‘had A ¢0(Ay), then ¢:=
inf,eq(4,)|4 — 4| > O because o(Aw) is closed, and therefore

W —Aze—lu—p| Vueoa(do), W €a(A(s) +T1(s)).
This implies

dist(A,0(A(s) + T1(s))) = e~ sup dist(y',0(Aw)) > €/2
W eo(A(s))

if s is sufficiently large, by Theorem 3.7; that is,
a(sk) ¢ o(A(se) +Ti(sk))

for k sufficiently large.
Then

%IIVsé(Sk)Ilsk > dist(a(sk), o(A(sk) + T1(1))) 7 Vs&(5) g,
> [|(A(sk) + Ta(se) — 2(si)1d) 7' Vi&(su)
= [1<(si)
—1,

where k is chosen so large that |A— a(sy)] <¢&/4. But this contradicts
IVs&(si)lls, — O, hence 4 € 6(Aw). Let us show that indeed

lim a(s) = A.

S§—00

Take now an arbitrary sequence s;, — oo. Then there is a subsequence that we
denote again by (s}) so that a(s;) converges to some 4, and we have to show that
4= A Assume that x4 < A. It is a consequence of Theorem 3.7 that there are
d > 0andve (u,4) so that

v a(A(s) +Ti(s))
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and
dist(v,6(A(s) + T'1(s))) = d

whenever s is sufficiently large.
Let § be any number with «(5) = v. Then we estimate as before

—}iIIVsé(sA)IIsA > dist(v, a(A(8) + T1(3))) Vs3> 1
and
o« (8) =d? >0,

where § is large, which implies a(s) > v for s sufficiently large in contradiction to
a(sy) = <.

In the case u > A, we also get o/(8) = d? > 0 for all large § satisfying a(3) =
v € (4,u) (v,d having the same properties as before), which would imply a(s) > v
in contradiction to a(sx) — A < .

Hence we have shown that a(s) converges to A€ d(A,) as s — co. The
number A is actually an eigenvalue because (A, — ,u)_1 is a compact operator
whenever u ¢ o(4,). We must have 4 <0 since otherwise we would have
IE(s)|| 2 — oo as s — co. Because the spectrum of A consists of eigenvalues
only and in view of the nondegeneracy assumption we have 0 ¢ 0(Ax), and
therefore A < 0.

So we have settled the case for which ||{(s)||.. # O for all s > so. Assume now
that ||{(s*)|| . = O for some s* > so. Then {(s*,¢*) = 0 for all t* € [0, T]. Using
the generalized similarity principle (see [10] or [1]), we find an open neighbour-
hood U for each (s*,t*) so that {| is represented by

{(s,1) = ®(s, 1)h(s, 1),

where @ : U — GLg(C) is continuous and h: U — C is a holomorphic function.
Because (s*,t*) is a cluster point of zeroes, we conclude that {|; = 0 and con-
sequently {(s,t) = 0 for all s > so. This finally completes the proof of Lemma 3.9.

O

LEMMA 3.10.  For every B = (B,5,) € N* and j € N, we have

sup  |9P¢(s,1)| < oo,
(s,t) € [s0,0) %[0, T]

da
as

(s)

sup
Sp <8< 00

< o,
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where &(s,t) = {(s,t)/11{(s)|l, and a(s) = (A(s) - &(s) + T1(s) - &(s), &(s)), (recall
that 0 € N by convention).

Proof. Recall that & solves the following equation:
05&(s, 1) = =M (v(s, 1))0,& (s, 1) — ae(s) - &(s, ). (22)
Moreover, for any k > 0,
6:6(5, 0) eR,
0kE(s, T) e iR.

We show the following. For each NeN*(N >1!),2<p < oo there are
On,Cn,p > 0 and sy > s so that

I€1lwr (5 8.5+ +onix[0.71.R2) < Ciop

whenever s* > sy. The constant Cy, does not depend on s*. By the Sobolev
embedding theorem, we obtain

IIi“CN—l(Q‘;N) < éN,p,

where Qs := Q(s*,dx) := [s* —In,s* +0n] x [0,T] and Cy, >0 does not
depend on s* > sy. But then

sup |0P&(s, 1)| < max sup 10P&(s, 1)), Cnp p < 00
(s,) € [s0,00) %[0, T (s,1) €[s0,53]%[0,T]

if |[f|<N-1 Take do>0 and define a sequence J;\, (1/2)dy by J;:=
(1/2)00(1 +277). Let B; : R — [0,1] be a smooth function that vanishes outside
(s* —6j_1,5* +6j_1) and equals 1 on [s* — J;, s* + J;].

We define the column vector

W (s,t) := (&(s, 1), 0sE(5, 8), . . ., ONT1E(s, ).

If F:[sg,0) x [0,T] — C is a smooth function with F(s,0) e V1,F(s,T) € V3,
where V;, V; are totally real subspaces of CV, then we have the following a priori
estimate for §;F:

1B Flwroaes 6,1 < CUOBF) o 6, 1)) (23)
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where C is a positive constant depending on p, J;—1, but not on s*, and where
0 = 0s + Jod; is the standard Cauchy-Riemann operator. (For a proof of this
estimate see [1], [12] or [13].)

We look for a differential equation that is satisfied by W and derive an a

priori estimate using (23). We apply now 6f to equation (22) with k> 1 and
obtain

k k
0 = 0,(0%&) + M(v)3,(358) + ) (’l‘ ) AM)a(*') + > ( k) dla okle.
I=1

1=0 !

As in the proof of Theorem 3.3, we introduce

0 0 0 0 0

An 0 0 0 0

A= A Az 0 0 0
AN—iN-1 AN-2N-1 AnN-3N-1 -+ Agn-1 O

with Ay := (%)0}(M(v)) and

o 0 0 - 0

x11 o 0

G = 022 373 o - 0
ON-1,N-1 ON-2N-1 O®N-3N-1 =-°- &

with ay := (*) d'a/ds’. Then we obtain the following equation for W:
oW + MD)W +A-8,W +4-W =0, (24)

where |A(s, t)| — O uniformly in t as s — co.

(Remark on the notation: We write again M(v), Jo, M, for
diag(M(v), ..., M(v)), diag(J, ..., Jo), and diag(M, ..., My).)

We have to bring the Cauchy-Riemann operator 4 into play as follows. Define

T (t) = (=JoMuo (2)) /2

and recall that T ()Mo (t)Te(f)™" = Jo. Applying Ty, to equation (24), we
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obtain

0= 0y(ToW) + ToM oo T ' Too 0, W + TooAd, W
+ Too(&- W) + Too (M(v) — Mo)0, W
= 0(TowW) — JoTooW + Tio (& - W) + Too A&, W + Too (M(v) — M), W

= (T W) + A1 - W — JoTou W + Tpo (&~ W),

where again |A(s,t)] — 0 as s — oo uniformly in t.
We estimate with (23), £(s*) = supy(,. 5, ,)|A1| and (B;W)(s,t) := B;(s)W (s, 1):

”ﬂjW”Ww(QJj_l) < a|Bi(To W)”Wlm(g,j_ﬁ
< C2||5(ﬁj(Too W))”LP(Q,;]._l)
< allBillcl Wi, ) + c2llB0(T W) Izr(0s,-1)
< (CZHﬁJ,“C‘) + C3)||W||LP(Q§j_,) + calld - W”LP(QJJ,_I)
+ &5 (SN0 B W) Loy,
S esllWllzog, ) +calld - WilLog, ) + &i(S B Wllwrag,, -
Remarks. (i) Recalling that T,, and M, are actually diag(T,,...,Ty,) and
diag(M, . .., M), we conclude that T, (O)RN and Tw(T)JoRN , are totally real
subspaces of CV so that the estimate (23) can be applied to T, W.

(i) The constants cy,...,cs above do not depend on s* since they only contain
the constant C in (23) or upper bounds for T, T,;! and their derivatives.

Choose now s7 > s so that ¢;(s*) < 1/2 whenever s* > s7; hence

1 .

5 ”ﬂjW”WU(Q‘;j_l) < c5||W”LP(QJj_‘) + caljd - W“LP(QJ],_I)
and

”W”Ww(g,j) < co(”W”LP(Q‘;},_l) +la- W“Lp(g,j_l)) (25)

for a suitable constant ¢y = co(N, p,j) independent from s* whenever s* > s}
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We now proceed inductively. We first discuss the case where N = 1; that is,
= (&), @ = (a), and A vanishes. We know already that « is bounded and

s*+do
W10y = j 1) o, ds < 2C%s

since ||&(s)]|; = 1.
Using (25), we get for s* > sj,

Wi, ) < € < o,

where ¢ depends on Jy but not on s*. By the Sobolev embedding theorem, we
also have bounds

IWllLeg,) S €0 < ©
not depending on s*. Inserting this into (25) again, we obtain
IWliwte,) < cp < © (26)
for all Qs5, = Q(s*,52) with s* > s;. We have shown before (equation (19)) that
o (s) = 2| V&(s)II; + (M(0(s))8:T1()E(5), &(5))s + (VsT1()]E(5), £(5))s
which implies
o/ ()] < |07 +¢”

for suitable constants ¢’, ¢” > 0. Therefore,

s*+0,
1 s 10) < J (¢N3(5)I12 + ") ds

* 4+

<2 J (P10:LE)E + (")) ds

S*—

*

s T 14
- (c')Pzp—lj (J 10:£(s, )2 dt) ds + 2P5(c")P
§*—0, 0
< (P2 TP AL B, g, ) + 2702
2

< CIII

)
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where 0 < ¢ does not depend on s*, using Holder’s inequality and (26) with p
replaced by 2p.

Assume now that W = (&,8,¢,...,0N71¢) is bounded in L?(Q(s*,dx)) by a
constant ¢ = ¢(N, p) > 0 that does not depend on s* (s* larger than some sy).
Moreover, we assume that all the derivatives of a up to order N — 1 are bounded
in LP(s* — dy,s* + dn) by constants not depending on s*.

Then by (25),

“W"WLP(QJN_H) < co(”W”LP(QJN) +l&- W"LP(QJN))

with 0 < co = co(N, p) whenever s* > sy, ;. Each component of &- W can be
written as

Zkld ()91 (s, 1)

=0

with suitable real constants k;.

Now ¢&,0:¢,.. 6” 2¢ are bounded in WbLP(Qs.), so by the Sobolev em-
bedding theorem we have C%(Q;,)-bounds independent of s* > sy. The deriva-
tive 6” 1¢ is only (s*-uniformly) bounded in L?, but it is paired with «, which
we know to be bounded; hence & - W is bounded in LP(Q(s*,dy)) independent of
s*. This gives us an s*-uniform W'?(Q;,.,)-bound on w.

In the next induction step (i.e., W = (£,0:,. . f) ), the N th derivative of o
appears in a- W, so we still have to show that dN a/dsN is (s*-uniformly)
bounded in LP(s* —dnt1,5* + In+1)-

Using (19), we note that dVa/ds™ can be expressed as follows:

dNa

TN (V) VET(S)),
ki+ky=N-1
+ > di(VEIT(9)]VEE(s), VEE(s)),
hi+h+l3=N-1

Y emumam (M(0(9) VAT (5)VI2E(s), VIRE(s),,  (27)

my+my+m3=N—-1

where the indices kj, [;, m; range from zero to N — 1, and c, d, e are suitable real
constants. The s*-uniform WI*P(Q(;NH) bound on W = (&, 05, .. 6” 16) implies
an s*-uniform C%bound by the Sobolev embedding theorem. Smce I'i1(s) and
all its derivatives converge to zero as s — oo uniformly in ¢, we also obtain s*-
uniform C°-bounds for all covariant derivatives V™&(s) up to order m = N — 1,
and s*-uniform LP-bounds for VY&(s). The only expression in (27) that contains
VNEGs) is (VNE(s),E(s)),, so ||dNa/dsN ||L,, 0y,,) €0 be estimated from
above by the C%-bounds on V™¢(s) for m < N — 1 and the L%-bound on VN ¢(s).
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Summarizing, we have shown the following. For each N € N* and 2 < p < oo,
there are constants ¢ = ¢(N, p) > 0 and s}, > so so that

dko

= 2 1850 Lo (s < (N> P)

LP(s*—dN,5*+ON)

whenever s* > sy, 0< k< N —1, and /€ {0,1}. Applying the Sobolev embed-
ding theorem to a, we get the required bounds

do
sup |-~ (s)

Sp <5< 00

< 00.

In order to complete the proof, we still have to derive s*-uniform LP(Q(s*,dn))-
bounds for 8¥0'¢ when | > 1. We do this by applying kol to

0:E(s, t) = M(v(s, 1)) 05 (s, t) + a(s)M(v(s, t)) - &(s, t).

Then one can proceed inductively, and the proof of Lemma 3.10 is completed.

O

The following lemma is proved in the same way as Lemma 3.6. in [7]. We
only have to use the covariant derivative V£ in the estimates instead of 0,£. So
we omit the proof.

LemMMA 3.11. Let
E = W2([0, T], R?) < L*([0, T],R?)
be the eigenspace of Ay belonging to A € 6(A ). Then
inf |(s) — ellwraqo,rym2) — O

as s — oo. O

LEMMA 3.12. There exists ec E such that &(s) — e in WY2([0, T],R?) as
s — 00.

Proof. Take any sequence s, — oo. By Lemma 3.10, ({(sn)),n is bounded
in W22([0,T],R?). Since W22([0,T],R?) is compactly embedded in
Ww12([0, T],R?), we find a subsequence of (s,) (which we denote again by (s,))
that converges in W12([0, T],R?) to some e. Using Lemma 3.11, we conclude
that e € E. So every sequence s, — oo has a subsequence (s;) so that &(s}) con-
verges in W12([0, T], R?) to some eigenvector of Ao
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It remains to show that this limit is unique. So assume that
* {(ta) > € €E,
o &(sy,) > ecE

in W12([0, T],R?) for sequences s, 7, — oo, and show that e =¢’. We equip
L([0, T], R?) with the inner product

T
(ur, u3) = jo Cun(8), —Jo Moo (D)ua(t) dt,

and we denote the corresponding norm by || . ||. Let
P:L*[0,T),R*) - E

be the orthogonal projection onto the eigenspace E of 4, belonging to the
eigenvalue 4, and let

&(s, 1) := (PE(s))(0).
We claim that Ao, (PE(s)) = P(Ax&(s)). Indeed
Ass - £(3) = Awo((1d = PE(S)) + A (PE(S))
= Ao ((Id = P)¢(s)) + 4 (PE(s))
and
P(A - £(s)) = P(Ao((Id — P)E(5))) + Ao (PE(s)).
If x € E, then
(Aw - £(5) — Ao (PE(5)), ) = (&(s) — PE(s),4- ) =0,
and therefore P(A((Id — P)&(s))) = 0, proving the claim. Recall that
0sE(s,2) = (A(s) - £(5))(2) — a(s)&(s, 1)

Applying P, we obtain with &(s) := A(s) — Aw,

05€(s,1) = (Aoo - &(5))(1) — a(s)E(s, £) + (Pe(s)(s))(2)
= (= a(s))&(s, 1) + (Pe(s)é(s)) (1) (28)
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and
IP((A(s) — A)E(5))l
< [[(A(s) = Ao)E()l
< ” U; DM(av(s, 1) + (0,0, (1 — o)1) - (u(s, 1) — (0,0,1)) da] L B&(s, t)”
<ce™,

using Lemma 3.10 and Theorem 3.3. Define

&
0 = &

Then we obtain with (28)

a:(s,1) _ (&(s),05€(5))

oun(s, 1) = 25 ,0C(5)) g

10 =51 " Eer oY
_ ()0 (0s). P9 )

161 16

We note that
1E(s) — &) = 0

as s — oo; otherwise we could find & > 0 so that ||€(s) — &(s)|| = & for all large s.
But this would imply

¢ < [|(Id = P)&(sn)|| — [I(Id — P)e|| = 0.
We also have ||f(s)l| > 1/2 for all large s because
IEG)I = €@ = I1E(s) — )l
> 2 el o)l

S§— 00

The last step follows from ||&(s)]| — 1:
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T
eI - 1] = jo CE(5,1), ~ oMo (D (s, 1) dt — 1‘

T
J, €5, 90(M006,0) - M5, dtl

<l sup_[M(o(s, 1)) = Moo 1)

— 0 ass— oo.

We deduce from (29), using (#(s), dsn(s)) = 0,

loan(s)|1? = (P—(i)i(s—) : n(S))

IéEs)
< 2IPes)E(s)I’
= z 2

1)l
< ¢ e s

for a suitable constant ¢g. Then

In(s) — (@)l < j loan(s)l| ds

Tn

Sn
< const - J e Pds

Tn

—0 asn— 0.

Note that ||e|| = ||€’|| = 1 since ||&(s)|| — 1 as s — co. Because of
£ (s
(ss) = <(sn) -
1€ el
f Ty e
n(tn) = (z)

SRR

we conclude that e = ¢’, which proves the lemma.
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Proof of Theorem 3.6. We know from Lemma 3.9 that
(s, 8) = [1€(9) 11, (s, 2)

= o O )l (s, 1)

= b O a(0) 4 1(s,1),
where

r(s, £) == [1€(s0)ll, (£ (s, 2) — e(2)),
é(t) := [|{(s0)ll,e(2) € E,

and e is the eigenvector of A, given by Lemma 3.12. We even have convergence
of &(s) to ein C®.

Let ne N be an arbitrary number. By Lemma 3.10, the function &(s) is
bounded in W"*22([0, T], R?) independent of s. Then for every sequence 7} — oo,

there is a subsequence (7x) so that &(7;) converges in W"*+12([0, T],R?), but
since £(s) — e in W12([0, T], R?) already, we have &(s) — e in W"*+1.2([0, T], R?)
and finally in C"([0, T], R?) by the Sobolev embedding theorem. This shows that

|;r(s, 1) — 0

as s — oo uniformly in ¢ for all I > 0. Recall that
05(5,1) = [Moo(£) — M(u(s, 1)))8:&(s, )
+ (Ao = A)E(s, 1) + (A — a(s))E(s, 1) (30)

Also remember that
* |0*(My(t) — M(v(s, t))| — 0 as s — oo uniformly in ¢ for all @ € N2, |a| > 0
e [[(Aw — A)&(s, t)||c: — 0 as s — oo since &(s) — e in CHL,

Applying 6 to (30) with an arbitrary integer | > 0, we obtain

|0:05¢ (s, )| = O

as s — oo uniformly in t. We want to show that also |9/0%¢(s,t)] — 0 as s —»
for all k > 1. Assume that this holds for some k > 1. If we apply 0, 6" to (30), then

oLk E(s, 1) = ini( )( )6""6"J[M<v<s, 0)]0i0i (s, 1)

i=0 j=0

k k k—i
_z( )‘;k_() 3101 (s, ).

i=0
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We observe that all the expressions with i # 0 converge to zero by the induction
hypothesis. If i = 0, we have to use that all the derivatives of a of order greater
than 1 converge to zero. This is true because the derivatives of « are C°-bounded,
so we obtain C% -convergence a(s) — A by the theorem of Ascoli and Arzela. []
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