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It is shown that a perturbation argument that guarantees persistence of inertial 
(invariant and exponentially attracting) manifolds for linear perturbations of 
linear evolution equations applies also when the perturbation is nonlinear. This 
gives a simple but sharp condition for existence of inertial manifolds for semi- 
linear parabolic as well as for some nonlinear hyperbolic equations. Fourier 
transform of the explicitly given equation for the tracking solution together with 
the Plancherel's theorem for Banach valued functions are used. 
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1. I N T R O D U C T I O N  

In recent years it has been shown that solutions of many important PDE's 
approach exponentially to a flow on a smooth invariant finite dimensional 
manifold. See, for example, Henry [6], Foias et al. [4], Babin and Vishik 
[1], Mallet-Paret and Sell [7], Chow and Lu [3], Hale [5], Yeman [9], 
and references therein. The crucial part often lies in finding an invariant 
attracting manifold for the flow in a Hilbert space X generated by 

u' + A u =  F(u) (1.1) 

where A is a sectorial operator [6] in X and F is such that for some 
~ [0, 1), Be~(X%X) 

IIF(x)--F(y)JI<=IIB(x--y)N for all x, y e X  ~ 
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here N(X ~, X) denotes the space of bounded operators from X ~ [6]  into X. 
Various conditions that ensure existence of an inertial (invariant and 
attracting) manifold for (1.1) are known, however, since the problem seems 
to be a fundamental one, it would be nice to have optimal conditions. Here 
a condition that is sharp in a sense is presented. 

Let 2 > 0 be such that 

2 + ico is in the resolvent set of A, p(A), for all co ~ N 

It is well known that A has an invariant subspace X1 which is the range 
of the projection associated with the spectral set in the half-plane Re z < 2. 
X1 is an inertial manifold for u' + Au = 0. If 2 +im E p(A - B) for all ~o ~ N, 
the same could be said for the equation u '+Au =Bu, and one way to 
ensure this is by requiring that 

[[B(A-2- i~o) - l l l<l  for all o)cO~ (1.2) 

since 

(A -- B -- 2 - / co)  -1 = (A - 2 - ico)- ~(1 - B(A - 2 - -  i ( . o ) -  1) - 1  

In this paper it is proven that (1.2) is actually also sufficient for the 
existence of an inertial manifold for the nonlinear equation ( 1 . 1 ) -  
no additional assumptions are needed. In spite of weaker and much 
simpler assumptions, the exponential atractivity result presented here 
(Theorem4.1) is actually stronger then the one obtained by Babin and 
Vishik [1] ,  Henry [6] ,  Chow and Lu [3] ,  and Foias et al. [4].  

The paper is organized as follows. Assumptions, notation, and some 
well-known facts are presented in Section 2. Existence and some properties 
of the invariant manifold are derived in Section 3. In Section 4 exponential 
tracking is proven. Sections 3 and 4 are almost completely independent. 
In Section 5 it is shown how to modify assumptions so that the results 
of Sections 3 and 4 become applicable also to hyperbolic problems. 
A comparison of various assumptions is made in Section 6. 

2. ASSUMPTIONS AND PRELIMINARIES 

The following is the list of all assumptions that will be in effect in 
Sections 3 and 4: 

(H1) X i s  a complex Banach space. 

(H2) There exists M o ~ ( 0 , ~ )  such that if f ~ C ( R \ { O } , X )  and 
I [ f (  )ll �9 LI(R) ~ L2(~), then 

f IIf(t)ll2dt<~Mo [Ij~(m)ll2 &o ~< Mo 2 llf(t)ll2dt 
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where 

(H3) 

(H4) 

(H5) 

= e-i~'~f(t) dt for ~o ~ 
o o  

A is a sectorial operator in X, c~ ~ [0, 1), and X ~ is defined as 
usual (Ref. 6, p. 29). 

2E ~ is such that 2+ico is in the resolvent set of A for all 

F: ~ x X ~ ~ X is continuous and such that for some B~ ..... Bm 
~ ( X  ~, X), we have that 

m 
I lF( t , x ) -F( t , y ) l l<~  ~ I[Bj(x-y)]l  for t ~ ,  

j = l  

(H6) ~~ ]]JF( t ,O) l l2dt<oe  for some ~ t<L  

M m []Bj(A - 2 - i ~ o ) - ~ ] l  < 1. (H7) o Y~j= 1 sup~o~ ~ 

x, y ~ X  ~ 

Observe that if X is any Hilbert space, then (H2) holds with M 0 = 1. 
Vagi [10] showed that if M o =  1, then X has to be a Hilbert space. 
A slightly strengthened version of (H2) would imply that X would have 
to be homeomorphic to a Hilbert space. However, the intuitive argument 
presented in Section 1 suggests that (H2) is probably not needed. (H2) 
is used only in the proofs of Lemmas 3.2 and 4.2. 

Various well-known consequences of the above assumptions and some 
definitions that are used in Sections 3 and 4 are now presented. 

Let a(A) denote the spectrum of A. Choose a < inf Re o-(A) and note 
that (Ref. 6, p. 29) X ~ is equal to the domain of ( A - a )  ~, Ilxll~= 
I[(A-a)~x[I for x ~ X  ~. Since (Ref. 6, p. 26) 

[[(A-af f (A-2- io)) - l l l  <~const. I I (A-a) (A-2- ico)  Xll~[l(A-2-ico ) ~ll ~-~ 

we have that 

sup [](A - a ) ~ ( A - -  2 -  ico)-i H < oo 
O) E[~ 

Thus, by choosing B o = l ( A - a )  ~ with l e (0 ,  oo) small enough, we may 
assume that 

p ( 2 ) = M o  ~ c j (2)< 1 
j = 0  

where 

c j (2)= sup ]]Bj(A --A--io2)-ll[ for j = 0 ,  1,..., m 
o J E ~  
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Since A is sectorial we have that  p(~) < 1 whenever  12 - ~l is small enough. 
Observe  also that  

I lF(t ,x)-F(t ,y) l l<~Lllx-y[I  ~ for t ~ ,  x, y e X  ~ 

where 

L =  ~ I1Bj(A-a)-~I[ 
j=0  

a ~ = { z ~ ( A ) l R e z < 2 } ,  a 2 = { z ~ a ( A l l R e z > 2 }  
Let 

No te  tha t  a(A)=a~wa2 and that  a l  is bounded.  Let Pls~3(X) be the 
project ion associated with al, P2 = 1 - P 1 ,  Xi=P~X for i =  1, 2. Choose  
2~, 22 E ~ so that  sup Re o" 1 < 2~ < 2 < 22 < inf Re o-2. As Henry  (Ref. 6, 
p. 30), one obtains  that  

JV1 c ~ ( A ) ,  AX1 c X1 

A 1 - A restricted to X1, A a ~ ~ (X1)  

Pie -a t=e-AtP  i for t>~0, i =  1, 2 

e-alz= ~ ( - - A i z ) "  for z ~ C  
~=o n!  

e-Al ' x=e  A'x for x e X  1, t>~O 

and that  there exists M < oo such tha t  for all x e X 

He-roll ~< Me a t  t >~ 0 

lie A'XlI~<~Mt-~e-~tlIxI[, t > 0  

lie AI'p,xll <.Me-~]lxll, t<~O 

Ile-A~'Plxq[~<<.Me-)'~tl[xb], t<~O 

]Ie-A'p2x]] <~Me )'2t[[xt], t>~0 

[[e-a'P2xll~<~Mt ~e- ; 'v  l[x[I, t > 0  

(2.1) 

3. I N V A R I A N T  M A N I F O L D  

For  z ~  define J g ( z ) c X  as follows: x ~ ( z )  if and only if there 
exists v ~ C ( ( -  ~ ,  0 ] ,  X ~) such that 

v(0) = x f' v(t) = e - ~ "  r~v(T) + e A"-'~F(s + 3, v(s)) ds 
T 

0 

f ]le%(t)[I dt< oo for 
--0;3 

for - oo < T <~ t <~ O 

p = l ,  2 
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Note that for each r e  N, x ~ X  ~, there exists a unique u~ C([-z, oo), X ~) 
such that 

fj u( t )=e  -A(' ~ x +  e -A(' S)F(s,u(s))ds for t>~r 

Therefore if x e~g( r ) ,  then there exists u e C(R, X ~) such that u ( r ) = x ,  
u(t) ~ ~ ( t )  for all t e N and 

t' u(t) = e - A ( ' -  r~u(T) + e -A(' ")F(s, u(s)) ds for - oo < T~< t < oo 
" ) T  

Thus, ~ is an invariant manifold. Obviously, if F is periodic in or 
independent of the first variable, the same is true for ~ .  Some of the 
properties of ~ that are proved in the rest of this section are gathered in 
the following theorem. 

Theorem 3.1. There exists a continuous h : • x X1 ~ X2 c~ X ~ such that 

~(~)={x+h(~,x)lxeXt} foral l  z e N  

Moreover, there exists c < oo such that 

[Ih(v,x)-h(r, y)ll=~cllx- ylt foral l  "Ce~, x , . F e X  1 

Define a normed space Y by 

[v l r=  ~ ( f ~  [[eX'Bjv(t)l, 2dt)  m for v e Y  
j = 0  oo 

Following Chow and Lu [-3], define S: R x Yx X1 -~ Y by 

S(r, v, x)(t) = e-Altx - ~  e -Al(t s)p1F(s + r, v(s)) ds 

+ e-A( '-s)p2F(s + z, v(s)) ds 
- - c o  

for z e N, v e II, x e X~, t ~< 0. To see that u = S(z, v, x) ~ Y, observe that 

O 

I[eX~u(t)[[=<.Me(X-~~)'ltxll + M r  K( t - - s )  O(s)ds 
- -  (;o 
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where 

O(s) = e ~ IIF(s + ~, v(s))ll ~ L Ile%(s)ll ~ + e ~ IIF(s + ~, 0)11 

~'e (~-)'1)' if t ~O  
K(t)=[t-~e(~-~2) '  if t>O 

O e L l ( - o e ,  O ) ~ L Z ( - o e ,  O), K e L I ( N )  

The following observation will be come useful: 

f'r e-mt-~)F(s  u ( t )=e  A( t -r)u(T)+ + % v ( s ) ) d s  

Miklav~i~ 

for - oe < T <~ t <<. O 

(3.1) 

~e Zte arc if t>O  

g ( t ) = ( e ~ t ( S ( z , u , x ) ( t ) - S ( z , v , x ) ( t ) )  if t~<O 

0 if t > O  
f ( t ) =  e;o t (F(z+t ,u ( t ) )_F(z+t ,v ( t ) )  ) if t~<O 

Note that g ~ C(~, X ~), 

It g(-)ll ~, I}f(.)ll ~ t ~ ( ~ )  n Lz(N) 

u, v~ Y. 

Proof. Let c = S(z, u, x)(O) - S(z, v, x)(O) 

which follows from the following: 

f2 P i u ( t ) = e - A ~ x +  e -A~( t - ' )P iF( s+r , v ( s ) )ds  

f2 eAl~plu( t )=x+ eA~'p1F(s+r, v(s)) ds 

r l u ( t ) = e  A l ( t - - T ) P I N ( T ) +  f i 'e-A'(t  ~)PIF(S + v(s)) ds "C , 

P 2 u ( t ) :  e -A( t -s )p2F(s+ z ,v(s))ds  
--oo 

P 2 u ( t ) = e  ~ ( ' - ~ ) P ~ u ( T ) +  e A ~  
T 

Lemma 3.2. IS(z, u, x) - S(z, v, x)[ r ~< p(2)lu - vl r for r e R, x �9 X1, 
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g(t) = e ~(' " )e-al( t - ' )Pl f (s)  ds+ e;4~-')e -A(t ")P2f(s) ds, 
oo 

0 

c = P 2 c =  f e ZseAsp2f(s) ds 
- -oo  

For co s N, let 

g(co) = e i~ g(t) dt (Bochner integral in X ~) 
--co 

A straightforward calculation gives that for all co e R, 

,,~-~ g ( c o ) - ( A -  2 + ico) lc 

-=f~ e i~ dt 

~0 f s  

= - j  ds dte(;'-i~~ ~( t - ' )P le  ~ ' f ( s )  
- - c o  -- o~ 

0 0 

+ f _ ~  ds fs dt e ( A - i c ~  - A ( t  s)pze-i~ ) 

= f o  ( A - 2 + i c o ) - l P l  e ~~ ds 
--  ~X3 

0 

+ f  ( A - 2 + i c o ) - l ( 1 - e A S e - S ( ~ - i ~ ) P 2 e - i ~ ' f ( s ) d s  
oo 

g(co) = (A -- 2 + ico)- ' f(co) 

Since Bj ~ ~ ( X  ~, X) for j = 0, 1,..., m, we have that Bj g = Bjg and 

fo rlSjg(t)tl~dt<..f~ Hgjg(t)ll~dt~Mof~ IIBJ~(co)ll ~dco 

<~Moc~ [If(co)ll2 d c o ~ M  ][f(t)l[2 d t<~M~c) lu-v[  2 
--~ Y 

which implies the conclusion. 

Lemma 3.3. 
S(~ ,  v, x )  = v. 

443 

t<<. O 

For each x E X1, "c ~ ~ ,  there exists a unique v ~ Y so that 
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Proof. Uniqueness follows from Lemma 3.2. Define 

Vo=0, v .+ t=S( r , v . , x )  for n~>0 

r.(s)=e;'~(F(r+s,v.+l(s))-F(~+s,v.(s))) for n > 0 ,  s~<0 

Note that for n ~> 0, t ~< 0, 

IIr.(s)ll2ds) <<.lv.+l-v.lr<~p'lvllr 

eX'(v.+z(t)--v~+l(t))= e~~ 

+ e a(' ")e A('-')P2r.(s ) ds 

IleX'(v.+2(t)-v.+a(t))ll <~k~p', k~ =MlVll r ( ( 2 - 2 x )  1/2+ (22_2)-1/2) 

Choose ee (0 ,1 )  so that a~>p and fix T E ( - ~ , 0 ) .  For n~>0, 
t~ (T, 0], we obtain from (3.1) 

v.+2(t)--v,,+l(t)=e AIt-r)(v.+2(T)-v.+l(T)) 

f ;  e-  A(t-S)(F(s + +'C, l ;n+l(S) ) - -F(s+'c  , 1)n(S)))ds 

]Iv. + 2(t) - v. + 1(011~ ~< M(t -- T) =e a{,-- V)-- ark, en 

+ ML s) =e a{'-S) l lv .+, (s) -v . (s)El=ds 

f' <~k2(t-T) ~anq-gk 3 (t-s)-=llv.+~(s)-v.(s)ll=ds 
r 

where k2=Me ~" ~ l~k l ( l+e  ~r), k3=ML(l+e~r)/e.  Thus, for n>~l, 
t~(T,  0], 

n 

e-.+,Hv.+l(t)_v.(t)ll  <~kz ~ kJ3 1 F ( 1 - ~ )  s- Z)j j~-i 

k" V(1-~)~  , 
+ 3 V(n - - ~ )  fT (t-- S) . . . . .  1~ IIVI(S)II ~ ds (3.2) 

and therefore there exists k4 < oo such that 

Ilv.+l(t)-v.( t)N~<~e'-l( t-T)-~k4 for n>~l, t e (T ,  0] 
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Therefore  there exists v e C(( - ~ ,  0] ,  X ~) such tha t  for all T e  ( -  ~ ,  0), 

l im sup [Iv(t)-v,( t)[ l~:O 
n --+ oo T <~ t <~ O 

and this implies  

fo Ile%(t)jl~ dt < oo 
--oo 

o He;t(v(t)-v.(t))lt~ dt <<- ( pn {Vllr)2 for n>/O f J_~ i - - p  t 

Since p(X) < 1 and  v,, do  not  depend  on ~ for X close to )o we also have 

fo ][eX'v(t)H2 dt < oo 
O:3 

and hence v e Y, Iv - vnl r -~ 0 as n ~ oo and  therefore S(z, v, x)  = v. 
Define h: ~ x X1 -~ X2 r~ X ~ as follows: choose  x e X1, z e ~,  let v e Y 

be such tha t  S(z, v, x) = v and  define 

t "  0 

h(z, x) = P2v(0)  = | eXSp2F(s + z, v(s)) ds = v(O) - x 

Note  that  if F is b o u n d e d  in X and  2 2 > 0, then h is b o u n d e d  in XL 

Lemma 3.4. Jg(z) = {x + h(z, x ) l x  e X1 } for  all z e ~. 

Proof.  If x ~ X ~ ,  z ~ N ,  and  v e Y  satisfies S ( z , v , x ) = v ,  then 
x + h ( z , x ) = v ( O ) ,  and  in view of (3.1) we have tha t  x+h( z ,  x)~M/(z) .  

If  v is as in the defini t ion of ~ ' ( r ) ,  then for t ~< 0, 

0 

Ply(O) = eAr'plY(t) + f, ea~PiF(s + r, v(s)) ds 

P1 v(t) = e-A~ ~P1 v(O) + f t e At(,-s)p1F(s + z, v(s)) ds 
JO 

I f - m < T ~ < t ~ < 0 ,  then 

f ; e  A( '  P2v( t) = e -A(t-  r)P2v( T) + --~)P2F(s + z, v(s) ) ds 

and  since the in tegral  converges  as T - ~  - ~ ,  the l imit  of  

He A(~- r)p2v(T)jl <~ Me-;.~,eZrFtv(T)][ 

865/3/3-10 



446 Miklav~i~ 

as T -~ - oo has  to  exis t  a n d  since v ~ Y it has  to  be  0. The re fo re  

f' P2v ( t )=  e A ( t - ' l P 2 F ( s + ~ , v ( s ) ) d s  for  t~<0 
- - o o  

a n d  hence  v = S( r ,  v, Ply(O)), v(O) = Ply(O) + h(~, Ply(O)). 

Lemma 3.5. There exists c < oo such that 

I lh (~ ,x ) -h (v ,y ) l l=<<.c l l x -y l l  f o ra l l  ~ 6 N ,  x, y e X l  

Proof .  C h o o s e  x, y e X1,  ~ E N a n d  let  u, v e Y be  such  t h a t  

S(~, u, x )  = u, S(~, v, y )  = v 

d l ,  d2 ..... d e n o t e  v a r i o u s  c o n s t a n t s - - i n d e p e n d e n t  of  ~, x, y. N o t e  t ha t  

u - v = S(~, u, y )  - S ( r ,  v, y)  + e-A~e(x - y)  

l u -  v] r 4  P l u -  v] r +  d l  I l x -  Yt] 

]u - v] y ~< d2 ]Ix - Yll 

e;'t(u(t) - v(t)) = ea te -A"(x  -- y)  + e;.(t- s) e -A,(t ,ip1 r(s) ds 

+ e ~.(t S)e-A(t s)p2r(s)ds 
--0(3 

w h e r e  r(t) = eXt(F(t + ~, u(t))  - F(t  + ~, v(t))) for  t ~< 0. S ince  I~  ]]r(t)]] 2 dt 
~<lu-vl~ 

o 
e at Ilu(t) - v(t)lL ~< M Ilx - YN + M ft e(~'- ~l)(t ") tlr(s)ll ds 

+ M  e (~ ~)(~- ' ) l l r (s)] l  ds 
- - o o  

< ~ M l l x - y l l + d 3 l u - v l y < ~ d 4 l l x - y l l  for  t~<0 

E q u a t i o n  (3.1) impl i e s  t h a t  for  - o o  < T <  t~<0, 

u ( t )  - v ( t )  = e - ~ " -  ~ ( u ( r )  - v ( r ) )  

f ; e -A ( t -~ ) (F ( s  + + ~, u(s)) -- F(s + ~, v(s))) ds 

Ilu(t) - v(t)ll~ ~< M ( t -  T) ~e -"(t r ) - ~ r d 4  I [ x -  Yll 

i' + M L  ( t -  s ) -~e  a(t-s31lu(s)-v(s)ll=ds 
T 
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which implies [see (3.2)] that  for some ds we have 

I [ u ( t ) - v ( t ) l l = < < . l l x - Y l l ( t - T ) - ~ d 5  for r e ( T ,  O] 

and since h(z, x )  - h(z, y)  = u(O) - v(O) - x + y, we are done. 

of h. 

L e m m a  3.6. h" ~ x X 1 -~ X ~ is continuous. 

Remark.  Inequali ty (3.3) below can sometimes imply more  regularity 

P r o o f  of Lemma 3.6. Fix ~ e R, x e X~. Take u s C(N, X ~) such that 
u(z) = x + h(z, x),  u(t) e J / ( t )  for t e ~ and for - ~ < T~< t < 0% 

u(t) = e - A ( t -  T)u(T) + 3% e-A(t-S)F(s,  u(s)) ds 

For  o e N, y e X1 we have 

h(r y )  - h('c, x)  = h(a, y)  - h(cr, x)  + h(o, P1 u('c)) - h(ff, P1 u(a)) 

+ P 2 u ( a ) -  P2u(z)  

IIh(o, y) - h(r, x)lr = ~ c JI y - x[I + c liP11t Ilu(~) - u(o)l] 

+ liP21[ {lu(a) - u(r)ll 

Therefore llh(a, y)  - h(z, x)ll~ --* 0 as o ~ z, y ~ x. 

(3.3) 

4. E X P O N E N T I A L  T R A C K I N G  

Choose  any r e  ~, u s  C( [ r ,  oo), X ~) such that  

(,t 

u ( t ) = e  -n( '  ~ ) u ( z ) + j ~ e  -A(' " )F(s ,u(s) )ds  for t>~z 

The purpose  of this section is to prove the following. 

Theorem 5.1. There exists a unique v e C(~,  X ~) such that 

f ) e - A ( ' - S ) F  v(t) = e - X ( ' -  r)v(T) + (s, v(s)) ds 

t l e ; " ( u ( t ) - v ( t ) ) t l P d t +  Ileatv(t)H~dt<oo fo r  p = l , 2  
- - o o  

f o r  - oo < T <~ t < oo 
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Moreover, v ( t ) e J ~ ( t )  for all t e R and there exists 
depends only on M, 2, 21 , )~2, c~, L, l, p(2), such that 

e;~tllv(t)-u(t)[l~<<.Ce ;T inf I Ix-u(T)l l~  fora l l  
x ~ . ~ l  ( T )  

Theorem 3.1 gives a bound  for 

P2u(t) - h(t, P1 u(t)) = P2(u(t) - v(t)) + h(t, P1 v(t)) - h(t, P1 u(t)) 

Define u( t )=  e -~( t  ~)u(z) for t <  z and let 

Z =  ~ e C ( ~ ,  Ile~'(~(t)llPdt<oo for p = l ,  2 --co 
~ (f~ )1/2 

I~lz = Ite;~tBjO(t)ll2dt f o r  ~beZ j=O oo 
w ( t ) = - u ( t ) + e  AI(t--z)PlU('C)-t'- e A(t ")P2F(s ,u(s))ds  

- -  o o  

- e -AI(t " )P iF(s ,u ( s ) )ds  for t~<z 

w ( t ) = e - A ( t - ~ ) w ( z ) = e  A('-~)PzW(Z ) for t > z  

Observe that  w e Z. Define R : Z ~ Z by 

(R())(t)=w(t)+ e A"-~P~(F(s,~(s)+u(s))-F(s,u(s)))ds 
- -  o o  

- e A~('-')PI(F(s, ( ) ( s ) + u ( s ) ) - F ( s ,  u(s)))ds  

Lemma 4.2. I e (~ -  eOlz<<.p(2)l(~-Ol~ for @, ~ ,~Z.  

Proof.  For  t ~ R l e t  

g(t) = e;~t((RO)(t) - (R~)( t ) )  

f ( t )  = e;t(F(t, fb(t) + u(t)) - F(t, ~,(t) + u(t))) 

As in the p roof  of Lemma 3.2, 

~ , ( c n ) = ( A - 2 + i ~ o ) - l f ( c o )  for ~oeR 

f tlBjg(t)ll2dt<<Mo ilBj~(og)]12dco~< 2 2 Moc s [If(t)ll 2 dt 
- -  c t3  O 0  - -  ~ 

2 2 2 <~Mocj I r  q~lg 

Miklav~i~ 

C E [0, ~ ) which 

z<~ T<~t< ~ 
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Lemma 4.3. There exists a unique O e Z such that RO = 6). Moreover, 
there exists C~ [-0, ~ )  which depends only on M, 2, 21, )~2, ~, L, l, p(2), 
such that 

e~'l[(9(t)ll=<<. Ce ~~ inf IIx-u(T)ll~ whenever z<~ T<. t< ~ 
x E J l ( T )  

Proof. Uniqueness follows from Lemma 4.2. Let ~b o = 0, ~bn+l= Rq~ n 
for n ~> 0. Note  that  for t e ~, n ~> 0, 

~ f t  c~ e ~ t ( ~ + z ( t ) - ~ + l ( t ) )  e~(t-'~e A(,-,)p2r~(s)ds 

-- e ~(~ ")e-A~(~-~)Plr~(s ) ds 

r~(t) = e~'(F(t,  ~ +,( t )  + u(t)) - F(t, ~n(t) + u(t)))  

Let f~(t) = e ;'t I1~+ l(t) - ~( t ) l l~  and 

~ MLe (;~- ~)~ if t~<O 
K(t )=[MLt-~e(~- ;2) '  if t > 0  

and note  that  

f,+~(t)<~ K ( t - s ) f , ( s ) d s  for n~>0, t e n  (4.1) 
oo 

Define K~ = K, Kj + ~ = K * Kj for j />  1 and note  that 

f~+j<~Kj, f~ for n~>0, j~> l  

Choose  an integer N~>I  such that  2 N ( 1 - c 0 > l .  Young's inequality 
(Ref. 6, p. 34) gives 

K~sLq"(N), q ~ = 2 N / ( 2 N - n )  for l <<.n<~2N 

Thus, KNE L2([~) and for n >~ 0, 

Hfn+N][or ~ IlK. I[2 I]f~[12 ~ < []Ku[]2l 1]q~.+~--~n[~ 

]lfn + NIl ~ ~< KNI[21-1 [@II~P ~ 

Therefore,  there exist O s C(~,  X~), d e  ~ such that 

e).,llOg(t)_b~(t)ll <~clp~ N for n>~N, t ~ R  
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Using the facts that  we can replace 2 with ~ provided that  1 2 -  ~] is small 
enough and that  this change does not  effect ~b. and hence O, we see that  
there exist dl < ~ ,  e < 1, 6 > 0, such that  

e~[[O(t)-(~.(t)[[~<<.dle'e -~ltl for t ~ ,  n>~N 

Thus OeZ,  I O - ~ b . l z - ~ 0  as n ~  ~ and therefore RO=O. 
To prove the moreover  part, choose any Te [z, ~),  xedg(T). Let 

O e Y be such that S(T, 0, PlX) = 0, hence x = 0(0). Define 

~O(t-  T) -u( t )  for t ~< T 
0o(t)= 

for t >  T 

00 is in general not  continuous,  however, 0 1 - R 0 o  can clearly be 
evaluated, and a long but s traightforward calculation gives 

~e -AI~' r )Pl(u(T)-x  ) if t~< T 

01(t)-O~ r)P2(x-u(T)) if t> T 

and thus 0 ,  e Z. Define 0 .  +1 = R 0 .  also for n >~ 1. 
Since I~b. - O l~ ~ 0 as n --* m, Lemma 4.2 implies 

[O-O.[~<<.P" ~ 1 0 2 - 0 1 [ ~ / ( 1 - P )  for n~>l  

For  n ~> 0, t e N, define g.(t) = e ;'t [I 0 .  + t(t) - 0.(t)[[ ~. As above, 

g.+j<<.Kj.g, for n~>0, j ~ > l  

[[gn+ul[~ ~ [[KNll2llgnl[2~ [[KNll2l-l[On+l--Onlz 

<<.llKNl121-1102-O~rzp "-~ for n~>l  

Hg.]lo~ ~< IIKNII2LI ~llg~ll2P "-u-a 

<~]]KuIt2IIKII1LI a]]goH2p"-U-1 for n>~N+l 

e;'tHOj(t)-O.(t)II~<.]IKNH2IIKII~LI-~(t-p) ~]]g0ll2P" u - 1  

for N+l<<.n<~j, tE~ 

e)'~]lO(t)-O.(t)l]=<<. IIKNIIzlIKII1LI-~(1- P) ~llgon2p" U - - I  

for n>~N+l, t e ~  
For  t >  T we have 

e;" II O(t)II ~ ~< e ~'̀  II 6)(1)- ON+ a(/)ll = + go(t) + g~(t) + ... + gN(t) 

<~ IIKNII211KIIaLI-I(1--P) ~llgoll2 

+ (1 + Ilglll + "-- + IIKllN)llgol[~ 
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Evalua t ion  of Ilgol]2, Ilgo[t~, gives 

e ~' II O(t)[I = ~ Ce~TIIx - u(Z)ll = 

where 

where 

for t >  T 

e~' l lO( t ) l l~Ce~'Tl lx- -u(Z) l l= for t >  T 

c = IIKNH 2 ]]K]] 1L1-~(1 - p ) - ~ M  ~/1/[  2(2 - )~1)] -~- 1/[-2()~2 - ).)] 

+ M ( 1  + Ilglt~ + . . .  + llgll N) 

P r o o f  o f  T h e o r e m  4.1. If  O s Z i s  such that  R O = O  and v = O + u ,  
then a long but  obvious  calculat ion shows that  this v has the desired 
properties.  

Suppose  that  we have v as in Theo rem 4.1. Obvious ly  v - u e Z .  We 
show that  v - u  = R ( v -  u) and hence L e m m a  4.3 implies uniqueness. 

F o r  - ~ < T ~ < t < ~  we have 

P2(v(t) - u ( t ) )  = - P 2 u ( t )  + e - A ( *  T)P2v(T) 

~" e a(,-~) P2(F(s ' v(s) ) -  F(s, u(s)))  + ds 
JT 

+ fTe -A( ' -~ )P2F(s ,  u(s)) ds 

letting T ~  - ~ ,  we obta in  (as in the p roo f  of L e m m a  3.4) 

P 2 ( v ( t ) -  u ( t ) ) =  - Pzu( t )  + I t_ ~ e A('-s~ P2F(s , u(s)) ds 

+ e A( ' - ' )Pz(F(s ,  v ( s ) ) -  f ( s ,  u(s)))  ds 

If T ~< t ~< T, then 

(4.2) 

PI(v(  T) - u( T) ) = e - AI(T t) Pl(v(  t ) - u( t) ) 

+ f]" e -AI (T-s )p , (F(s ,  V(S)) -- F(s, u(s)))  ds 

e ~ ( v ( t )  - u ( t ) )  = e - A I ~ ' -  T ~ P I ( v ( T )  - . (  r ) )  

;7 - e - A ' ( t - ' ) P l ( f ( s ,  v ( s ) ) -  F(s, u(s)))  ds 
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letting T ~  oo we obtain that for t ~> ~, 

;$ P l ( v ( t )  - u ( t ) )  = - e -Ai(t " ) P l ( f ( s ,  v(s) )  - F(s,  u(s) ) )  ds (4.3) 

If t ~< r, then 

P l ( v (  t) - u( t) ) = - P l  U( t) + e -  Al(t- z) PlO)('C ) -- U('C)) + e -  A'( t -  ~) P l  U('r ) 

-- f ]  e A ' ( ' - s~PIF(S ,  v(s))  ds 

and (4.3) implies 

f; = - P l u ( t ) + e  Aj(t " ) P l u ( z ) -  e Ai(t s ) p 1 F ( s , u ( s ) ) d s  

f) - e - A ~ ( t - s ) P l ( F ( s ,  v (s ) )  -- F(s,  u(s) ) )  ds 

= P1 w ( t ) -  e A~(, " )PI(F(s ,  v ( s ) ) -  f ( s ,  u (s ) ) )  ds 

this, (4.2), and (4.3) imply that v -  u = R ( v -  u). 

Miklav~i~ 

5. HYPERBOLIC EXTENSION 

The assumption used so far that A is a sectorial operator can be 
weakened by requiring that - A  is the generator of a strongly continuous 
semigroup and thus the theory becomes applicable to hyperbolic problems. 
In this case the condition that 2 +/co is in the resolvent set of A for all real 
co does not guarantee existence of subspaces with bounds on the semigroup 
as presented in Section 2 therefore we have to postulate them. With these 
changes and ~ = 0 (hence X ~ = X, II" II ~ = II II), the results in Sections 3 and 
4 apply unchanged. For  the sake of clarity let me state explicitly all 
assumptions needed in this case. 

( V 1 )  X is a c o m p l e x  Banach  space. 

( V 2 )  There  ex is t s  Mos(O, oo) such that i f  f e C ( N k { O } , X )  and 
IIf(" )U ~ LI(N) c~ Lz(N), then 

Ilf(t)l[2 d t < . M o  IIf(~o)ll2 d o ) < . M ~  IIf(t)ll2 dt 
- -  a o  0 9  c s o  
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( v.~) 

(v4) 

where 

f(a)) = e - i ~ f ( t )  dt for co ~ ~ 
c o  

- A  is the generator of a strongly continuous semigroup e m, 
t>~O, on X. 

X = X I @ X 2 with e AtX 1 = XI, e - A t x  2 C X 2 for t >~ O, and there 
exist M1 < ~ and - ~  <21 <~2 < ~ such that 

][e-mxl[<~mle-;2~]lxll for t>.O, x ~ X 2  

Ilxl[ <~Mle;~ltl]e-A'xH for t>~O,  xEX1 

(V5) F: ~ • X--+ X is continuous and such that for 
B 1,...,B m E ~(X) ,  we have that 

P[F(t,x)--F(t,y)ll<~ ~, IlBj(x-y)]I for t 6 ~ ,  x, y 6 X  
j = l  

(V6) 2 ~ (21, 22) and ~o_~ [[eUtF(t, 0)llZdt < ~ for some # < 2. 

(V7) M o Z j m l  sup~o~I lB j (A-2 - i~o ) - l l ]  < 1. 

some 

Observe that (V4) implies that there exist projections P1, P2 E~(X)  
such that P i X = X i ,  Pi e re=e-raP i for i = 1 , 2 ,  t~>0, and P I + P 2 = [ .  
(V4) also implies that e m is invertible on X1, hence, it can be extended 
to a strongly continuous group defined by 

= ~ ' e - m  for t>/0 
~(X1)~  e al [(eA') -1 for t < 0  

For  z ~ C with )~1 < Re z < 22, one can easily show that z is in the resolvent 
set of A and that, for all x E X, 

- z )  - 1 P l x =  e Al'e~'Plx dt (A 

Jo ( A - z )  IP2x= e me~'P2xdt 

(. IlelLI + IrP  ) 
[ l (A-z )  ~II~<M1 \ R e z - 2 1  2 2 - R e ~  

As in Section 2 let B o = l . I  with I~ (0, o0) so small that 

p(2) =- Mo ~ ej(2) < 1 
j=o 
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where 

c/(2)= sup I lBj(A--2- ia))  11] for j = 0 ,  1 ..... m 
coE]~  

(V6), (V7), and p(2) < 1 also remain valid if 2 is replaced with ~, provided 
that [2-~1 is small enough. Note that 

where 

I lF( t , x ) -F( t , y ) l l~L l lx -y[ I  for t E ~ ,  x , y ~ X  

j=0 

Now ~ = 0 ,  X~=X, II "ll~ = l] "ll. Clearly, one can find a < 2 1  and M <  oo so 
that the bounds (2.1) hold. 

Theorem 5.1. In Sections 3 and 4 everything remains valid under the 
above assumptions ( V1)-(V7) and with the above notation. 

Observe also that proofs of Lemmas 3.3, 3.5, and 4.3 can be simplified 
when ~ < 1/2. 

6. Examples. The following examples are presented for comparison 
purposes. 

Example 6.1. Assume that A is a self-adjoint operator in a Hilbert 
space X and that 

the spectrum of A is contained in (a, A1] w [-42, ~ )  

for some - ~  < a < 2 1  < 2 2 <  ~ .  A can have a continunous spectrum. 
Observe that if ~ [0, 1) and Ac (A1,22), then 

_~'(~-a)  ~ (22 -a ) "~  
[ l (A-a )~(A-2- i e ) ) - l l l<"max[  2 - 2 1  ' 2 2 - 2  ] (6.1) sup 

Fix ~ ~ [0, 1) and assume that F: R • X ~ --* X is continuous and that for 
some L ~ [0, c~), 

]lF(t,x)-F(t,y)ll <,LH(A-a)~(x-y)U for t~R,  x, y ~ ( ( A - a ) ~ ) = X  ~ 

Using (6.1) with 2 ~ (21, 42) that minimizes the right-hand side of (6.1), we 
see that all assumptions (H1)-(H7) are satisfied if 

fo []e;~tF(t, 0)112 dt < oo 
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and 

L((22 -- a) ~ + (21 -- a) ~) < 2 2 - 21 (6.2) 

In the literature the conditions corresponding to (6.2) are much more 
involved (see (5.1) of Chow and Lu [3] ,  (5.3) of Foias et al. [4],  
pp. 143-150 of Henry [6] ,  p. 423 of Temam [9]).  Their expressions 
become singular as c~ --+ 1 (e ~ 1/2 of Temam [9]. Mowever, it was known 
[8] that if ~ = 0 ,  then (6.2) is sufficient for the existence of an inertial 
manifold when the spectrum of A consists of eigenvalues only--which is 
assumed also by Foias et al. [4]  and Temam [9].  No assumptions on the 
range of F are made here, however, if one has that F: X~+~--+ X ~ for some 
/? > 0, then one may want to use X ~ instead of X for the basic space. 

Example 6.2. Consider 

u ~ = u x x + f ( x , t , u ,  ux), 0 < x < T r ,  t > 0  
(6.3) 

u(O, t) = u(~,  t) = 0 

where f :  [0, 7r) x • x C x C --* C is continuous and such that, for some 
L 1 < 0% L 2 < o0, we have that for all values of arguments, 

I f(x,  t, zl ,  z 2 ) -  f ( x ,  t, s,,  s2)l ~ L1121- Sll ~- Z 2 l z 2 -  s2l 

Let X=L2(0 , : g ) ,  A U = - - u "  for u~H~(O,=)c~H2(O,=), B l u = L l U  , 
B2u=L2u '  for yeHl (O ,  zO, c~e[1/2,1),  2 = ( n 2 + ( n + l ) 2 ) / 2 .  By using 
(6.1), (HT) becomes 

L1 n + l  
- - + L ) - - < I  
n + 1/2 - n + 1/2 

Thus if L 2< 1 and 

0 

f dt dx[e~f (x , t ,O,O)12<oo 
- -  < Y o  

for some real p, then all assumption (H1)-(H7)  can be satisfied by 
choosing n large enough. Existence of an invariant manifold for sufficiently 
small L2 has been shown by Brunovsky and Terescak (1989). 
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