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Abstract
Giroux showed that every contact structure on a closed 3-dimensional manifold is
supported by an open book decomposition. We extend this result by showing that the
open book decomposition can be chosen in such a way that the pages are solutions to
a homological perturbed holomorphic curve equation.
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1. Introduction
This paper is the starting point of a larger program by the author, Hofer, and Lisi
investigating a perturbed holomorphic curve equation in the symplectization of a 3-
dimensional contact manifold (see [6], [7]). One aim of this program is to provide
an alternative proof of the Weinstein conjecture in dimension 3 as outlined in [4]
complementing Taubes’s gauge theoretical proof (see [33], [34]). A special case of
this paper’s main result has been used in the proof of the Weinstein conjecture for
planar contact structures in [4]. Another reason for studying this equation is to construct
foliations by surfaces of section with nontrivial genus. This is usually impossible to
do with the unperturbed holomorphic curve equation since solutions generically do
not exist.

Consider a closed 3-dimensional manifold M equipped with a contact form λ.
This is a 1-form which satisfies λ ∧ dλ �= 0 at every point of M . We denote the
associated contact structure by ξ = ker λ, and we denote the Reeb vector field by Xλ.
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Recall that the Reeb vector field is defined by the two equations

iXλ
dλ = 0 and iXλ

λ = 1.

Definition 1.1 (Open book decomposition)
Assume that K ⊂ M is a link in M and that τ : M\K → S1 is a fibration so
that the fibers Fϑ = τ−1(ϑ) are interiors of compact embedded surfaces F̄ϑ with
∂F̄ϑ = K , where ϑ is the coordinate along K . We also assume that K has a tubular
neighborhood K × D, D ⊂ R2 being the open unit disk, such that τ restricted to
K × (D\{0}) is given by τ (ϑ, r, φ) = φ, where (r, φ) are polar coordinates on D.
Then we call τ an open book decomposition of M , the link K is called the binding of
the open book decomposition, and the surfaces Fϑ are called the pages of the open
book decomposition.

It is a well-known result in 3-dimensional topology that every closed 3-dimensional
orientable manifold admits an open book decomposition. Indeed, Alexander proved
the following theorem in 1923 (see [10], [30]):

THEOREM 1.2
Every closed, orientable manifold M of dimension 3 is diffeomorphic to

W (h) ∪Id (∂W × D2),

whereD2 is the closed unit disk in R2, whereW is an orientable surface with boundary,
and where h : W → W is an orientation-preserving diffeomorphism which restricts
to the identity near ∂W . Here W (h) denotes the manifold obtained from W × [0, 2π]
by identifying (x, 0) with (h(x), 2π).

The above decomposition is an open book decomposition, and the pages are given by

Fϑ := (W × {ϑ}) ∪Id (∂W × Iϑ ), 0 ≤ ϑ < 2π,

where Iϑ := {reiϑ ∈ D2 | 0 < r < 1}, and the binding is given by K = ∂W × {0}.
Note that we allow ∂W to be disconnected.

Giroux introduced the notion of an open book decomposition supporting a contact
structure.

Definition 1.3 (Supporting open book decomposition; see [16])
Assume that M is a closed 3-dimensional manifold endowed with a contact form λ.
Let τ be an open book decomposition with binding K . We say that τ supports the
contact structure ξ if there exists a contact form λ′ with the same kernel as λ so that
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dλ′ induces an area form on each fiber Fϑ with K consisting of closed orbits of the
Reeb vector field Xλ′ , and λ′ orients K as the boundary of (Fϑ, dλ

′).

We refer to a contact form λ′ above as a Giroux contact form. Note that λ′ is not unique
and that it is in general different from the original contact form λ. The following
theorem by Giroux guarantees existence of such open book decompositions, and it
contains a uniqueness statement as well (see also [16, Proposition 2]).

THEOREM 1.4 ([16, Theorem 3])
Every co-oriented contact structure ξ = ker λ on a closed 3-dimensional manifold is
supported by some open book. Conversely, if two contact structures are supported by
the same open book, then they are diffeomorphic.

In the topological category, it is possible to modify an open book decomposition
such that the pages of the new decomposition have lower genus at the expense of
increasing the number of connected components of K . It was not known for some
time whether a similar statement could also be made in the context of supporting open
book decompositions. In particular, it was unclear whether every contact structure
was supported by an open book decomposition whose pages were punctured spheres
(planar pages). The author and his collaborators could resolve the Weinstein conjecture
for contact forms inducing a planar contact structure in 2005 (see [4]). So the question
of whether all contact structures are planar became a priority, which prompted Etnyre
to address it in [14]. He showed that overtwisted contact structures always admit
supporting open book decompositions with planar pages, but many contact structures
do not. Since then, planar open book decompositions have become an important tool
in contact geometry.

In this paper, we will prove that every contact structure has a supporting open book
decomposition such that the pages solve a homological perturbed Cauchy-Riemann
type equation which we now describe after introducing some notation. We write
πλ = π : TM → ξ for the projection along the Reeb vector field Xλ. Fix a complex
multiplication J : ξ → ξ so that the map ξ ⊕ ξ → R, defined by

(h, k) → dλ(h, Jk),

defines a positive definite metric on the fibers. We call such complex multiplications
compatible (with dλ). The equation of interest here is the following nonlinear first-
order elliptic system. The solutions consist of 5-tuplets (S, j, �, ũ, γ ) where (S, j )
is a closed Riemann surface with complex structure j , � ⊂ S is a finite subset,
ũ = (a, u) : Ṡ → R ×M is a proper map with Ṡ = S \ �, and γ is a 1-form on S so
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that ⎧⎪⎪⎨⎪⎪⎩
π ◦ T u ◦ j = J ◦ π ◦ T u on Ṡ

(u∗λ) ◦ j = da + γ on Ṡ

dγ = d(γ ◦ j ) = 0 on S

E(ũ) < ∞.

(1.1)

Here the energy E(ũ) is defined by

E(ũ) = sup
ϕ∈�

∫
Ṡ

ũ∗d(ϕλ),

where � consists of all smooth maps ϕ : R → [0, 1] with ϕ′(s) ≥ 0 for all s ∈ R.
Note that equation (1.1) reduces to the usual pseudoholomorphic curve equation

in the symplectization R × M if we set γ = 0. The following proposition, which is a
modification of a result by Hofer [17], shows that solutions to problem (1.1) approach
cylinders over periodic orbits of the Reeb vector field.

PROPOSITION 1.5
Let (M,λ) be a closed 3-dimensional manifold equipped with a contact form λ. Then
the associated Reeb vector field has periodic orbits if and only if the associated PDE
problem (1.1) has a nonconstant solution.

Proof
Let (S, j, �, ũ, γ ) be a nonconstant solution of (1.1). If � �= ∅, then the results in [17]
imply that, near a puncture, the solution is asymptotic to a periodic orbit (see also [3]
for a complete proof). Here we use the fact that γ is exact near the punctures. The
aim now is to show that, in the absence of punctures, the map a is constant while the
image of u lies on a periodic Reeb orbit. Assume that � = ∅. Since

u∗λ = −da ◦ j − γ ◦ j,

we find, after applying d , that

�ja = −d(da ◦ j ) = u∗dλ.

In view of the equation π ◦ T u ◦ j = J ◦ π ◦ T u, we see that u∗dλ is a nonnegative
integrand. Applying Stokes’s theorem, we obtain

∫
S
u∗dλ = 0, implying that

π ◦ T u ≡ 0.
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Hence a is a harmonic function on S and therefore constant. So far, we also know that
the image of u lies on a Reeb trajectory, and it remains to show that this trajectory is
actually periodic.

Let τ : S̃ → S be the universal covering map. The complex structure j lifts to a
complex structure j̃ on S̃. Now pick smooth functions f, g on S̃ such that

dg = τ ∗γ =: γ̃ , −df = τ ∗(γ ◦ j ) = γ̃ ◦ j̃ .

Then the map u ◦ τ : S̃ → M satisfies

(u ◦ τ )∗λ = df.

The image of u ◦ τ lies on a trajectory x of the Reeb vector field in view of

D(u ◦ τ )(z)ζ = Df (z)ζ · Xλ

(
(u ◦ τ )(z)

)
,

hence (u ◦ τ )(z) = x(h(z)) for some smooth function h on S̃, and it follows that, after
maybe adding a constant to f , we have

(u ◦ τ )(z) = x
(
f (z)

)
.

The function f does not descend to S. If it did, it would have to be constant since it
is harmonic. On the other hand, this would imply that u is constant in contradiction to
our assumption that it is not. Therefore, there is a point q ∈ S and two lifts z0, z1 ∈ S̃

such that f (z0) > f (z1). Let � : S1 → S be a loop which lifts to a path α : [0, 1] → S̃

with α(0) = z0 and α(1) = z1. Considering the map

v := u ◦ � : S1 −→ M,

we see that v(t) = (u ◦ τ ◦ α)(t) = x
(
f (α(t))

)
and x(f (z0)) = x(f (z1)), that is, the

trajectory x is a periodic orbit. Hence the image of u is a periodic orbit for the Reeb
vector field. �

The following is the main result of this paper.

THEOREM 1.6
Let M be a closed 3-dimensional manifold, and let λ′ be a contact form on M . Then
the following holds for a suitable contact form λ = f λ′, where f is a positive function
on M . There exists a smooth family (S, jτ , �τ , ũτ = (aτ , uτ ), γτ )τ∈S1 of solutions to
(1.1) for a suitable compatible complex structure J : ker λ → ker λ such that
• all maps uτ have the same asymptotic limit K at the punctures, where K is a

finite union of periodic trajectories of the Reeb vector field Xλ;
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• uτ (Ṡ) ∩ uτ ′(Ṡ) = ∅ if τ �= τ ′;
• M\K = ⋃

τ∈S1 uτ (Ṡ);
• the projection P onto S1 defined by p ∈ uτ (Ṡ) �→ τ is a fibration;
• the open book decomposition given by (P,K) supports the contact structure

ker λ, and λ is a Giroux form.

Here is a very brief outline of the argument. The reader is invited to skip forward to
Section 4 to see in more detail how all the partial results of this paper are tied together
to prove the main result. In Section 2, we find a Giroux contact form which has a
certain normal form near the binding. Following an argument by Wendl ([39], [38]),
we will then almost be able to turn the Giroux leaves into solutions of (1.1) without
harmonic form except for the fact that we have to accept a confoliation form instead
of a contact form. Pick one of these Giroux leaves as a starting point. The next step is
to prove a result which permits us to perturb the Giroux leaf into a genuine solution
of (1.1) while simultaneously perturbing the confoliation form slightly into a contact
form. This is where the harmonic form in (1.1) is required. We actually obtain a local
family of nearby solutions, not just one. In Section 3, we prove a compactness result
which extends the local family of solutions into a global one. The remarkable fact is
that there is a compactness result in the context of this paper, although there is none
in general for the perturbed holomorphic curve equation. The special circumstances
in this paper imply a crucial a priori bound which implies that a sequence of solutions
has a pointwise convergent subsequence with a measurable limit. The objective is then
to show that the regularity of this limit is much better, that it is actually smooth.

We consider two solutions (S, j, �, ũ, γ ) and (S ′, j ′, �′, ũ′, γ ′) equivalent if there
exists a biholomorphic map φ : (S, j ) → (S ′, j ′) mapping � to �′ (preserving the
enumeration) so that ũ′ ◦ φ = ũ. We will often identify a solution (S, j, �, ũ, γ ) of
(1.1) with its equivalence class [S, j, �, ũ, γ ]. We note that we have a natural R-action
on the solution set by associating to c ∈ R and [S, j, �, ũ, γ ] the new solution

c + [S, j, �, ũ, γ ] = [S, j, �, (a + c, u), γ ], ũ = (a, u).

A crucial concept for our discussion is the notion of a finite energy foliation F .

Definition 1.7 (Finite energy foliation)
A foliation F of R ×M is called a finite energy foliation if every leaf F is the image
of an embedded solution [S, j, �, ũ, γ ] of the equations (1.1), that is,

F = ũ(Ṡ),
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so that u(Ṡ) ⊂ M is transverse to the Reeb vector field, and for every leaf F ∈ F we
also have c + F ∈ F for every c ∈ R; that is, the foliation is R-invariant.

We recall the concept of a global surface of section. Let M be a closed 3-manifold,
and let X be a nowhere-vanishing smooth vector field.

Definition 1.8 (Surface of section)
(a) A local surface of section for (M,X) consists of an embedded compact surface

� ⊂ M with boundary, so that ∂� consists of a finite union of periodic orbits
(called the binding orbits). In addition, the interior �̇ = � \ ∂� is transverse
to the flow.

(b) A local surface of section is called a global surface of section if, in addition,
every orbit other than a binding orbit hits �̇ in forward and backward time.
Furthermore, the globally defined return map � : �̇ → �̇ has a bounded
return time; that is, there exists a constant c > 0 so that every x ∈ �̇ hits �̇

again in forward time not exceeding c.

Using Proposition 2.5 below, the existence part of Giroux’s theorem can be rephrased
as follows.

THEOREM 1.9
Let M be a closed orientable 3-manifold, and let λ̃ be a contact form on M . Then
there exists a smooth function f : M → (0,∞) so that the contact form λ = f λ̃ has
a Reeb vector field admitting a global surface of section.

Existence results for finite energy foliations with a given contact form λ are hard to
come by since they usually have striking consequences. In [20] for example, Hofer,
Wysocki, and Zehnder show that every compact strictly convex energy hypersurface
S in R4 carries either two or infinitely many closed characteristics. The proof relies on
constructing a special finite energy foliation. In special cases they were established by
Hofer, Wysocki, and Zehnder [22] and by Wendl ([38], [40]). Proofs usually require
a starting point, that is, a finite energy foliation for a slightly different situation as the
given one. Then some kind of continuation argument is employed where all kinds of
things can and do happen to the original foliation. In [22], the authors start with an
explicit finite energy foliation for the round 3-dimensional sphere S3 ⊂ R4 which is
then deformed. Wendl’s papers also use a rather special manifold as a starting point.
The main result of this paper, Theorem 1.6, provides a starting finite energy foliation
for any closed 3-dimensional contact manifold (M, ker λ) since it is obtained from
deforming the leaves of Giroux’s open book decomposition. The pages are usually
not punctured spheres, and generically there are no pseudoholomorphic curves on
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punctured surfaces with genus which are transverse to the Reeb vector field. This
makes the introduction of the harmonic form in (1.1) a necessity. The price to be paid
is that compactness issues are more complicated.

Wendl [39] published a proof of Theorem 1.6 for the special case where ker λ is
a planar contact structure, that is, where the surfaces Ṡ are punctured spheres. This
result was outlined in [4]. Regardless of whether the contact structure is planar or not,
there are two main steps in the proof: existence of a solution and compactness of a
family of solutions. While the author established the compactness part for Theorem
1.6 long before [4] appeared, we will use the same argument described by Wendl in
[39] for the existence part since it simplifies the proof considerably.

The main theorem of this article was the first step in the proof of the Weinstein
conjecture for the planar case in [4]. Recall that the Weinstein conjecture [38, p. 358]
states the following: Every Reeb vector field X on a closed contact manifold M admits
a periodic orbit.

In fact, Weinstein added the additional hypothesis that the first cohomology group
H 1(M,R) with real coefficients vanishes, but there seems to be no indication that this
additional hypothesis is needed.

Moreover, Theorem 1.6 is also the starting point for the construction of global
surfaces of section in the forthcoming paper [7]. Another application will be an
alternative proof of the Weinstein conjecture in dimension 3 (see [7]) as outlined in
[4]. This complements Taubes’s recent proof of the Weinstein conjecture in dimension
3 using a perturbed version of the Seiberg-Witten equations (see [33], [34]). The
main issue with the homological perturbed holomorphic curve equation (1.1) is that
there is no natural compactification of the space of solutions unless the harmonic
forms are uniformly bounded. In the forthcoming papers [6] and [7] the lack of com-
pactness is investigated, and bounds for the harmonic forms are derived in particular
cases.

2. Existence and local foliations

2.1. Local model near the binding orbits
We use the same approach as in [39] and [38] to prove existence of a solution to
(1.1). Given a closed contact 3-manifold (M, ξ ), Giroux’s theorem implies that there
is an open book decomposition as in Theorem 1.2 supporting ξ . On the other hand,
any other contact structure ξ ′ supported by the same open book is diffeomorphic to
ξ . Starting with an open book decomposition for M , we construct a contact struc-
ture supported by Giroux contact form λ which has a certain normal form near the
binding.
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Definition 2.1
Let θ ∈ S1 = R/2πZ denote polar coordinates on the unit disk D ⊂ R2 by (r, φ),
and let γ1, γ2 : [0,+∞) → R be smooth functions. A 1-form

λ = γ1(r) dθ + γ2(r) dφ

is called a local model near the binding if the following conditions are satisfied:
(1) the functions γ1, γ2, and γ2(r)/r2 are smooth if considered as functions on the

disk D (in particular, γ ′
1(0) = γ ′

2(0) = γ2(0) = 0);
(2) µ(r) := γ1(r)γ ′

2(r) − γ ′
1(r)γ2(r) > 0 if r > 0;

(3) γ1(0) > 0 and γ ′
1(r) < 0 if r > 0;

(4) limr→0(µ(r)/r) = γ1(0)γ ′′
2 (0) > 0;

(5) κ := (γ ′′
1 (0)/γ ′′

2 (0)) /∈ Z and κ ≤ −1/2;
(6) A(r) = (1/µ2(r))(γ ′′

2 (r)γ ′
1(r) − γ ′′

1 (r)γ ′
2(r)) is of order r for small r > 0.

We explain some of the conditions above. First, since

λ ∧ dλ = µ(r)dθ ∧ dr ∧ dφ = µ(r)

r
dθ ∧ dx ∧ dy,

the form λ is a contact form on S1 × D. The Reeb vector field is given by

X(θ, r, φ) = γ ′
2(r)

µ(r)

∂

∂θ
− γ ′

1(r)

µ(r)

∂

∂φ
=: α(r)

∂

∂θ
+ β(r)

∂

∂φ
.

The trajectories of X all lie on tori Tr = S1 × ∂Dr :

θ(t) = θ0 + α(r) t, φ(t) = φ0 + β(r) t. (2.1)

We compute

lim
r→0

α(r) = lim
r→0

γ ′′
2 (r)

µ′(r)
= γ ′′

2 (0)

γ1(0)γ ′′
2 (0)

= 1

γ1(0)

and

lim
r→0

β(r) = − lim
r→0

γ ′′
1 (r)

µ′(r)
= − γ ′′

1 (0)

γ1(0)γ ′′
2 (0)

.

Recalling that ∂

∂φ
= x ∂

∂y
− y ∂

∂x
, we obtain for r = 0

X = 1

γ1(0)

∂

∂θ
,
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that is, the central orbit has minimal period 2πγ1(0). If the ratio α(r)/β(r) is irrational
then the torus Tr carries no periodic trajectories. Otherwise, Tr is foliated with periodic
trajectories of minimal period

τ = 2πm

α
= 2πn

β
,

where α/β = m/n or β/α = n/m for suitable integers m, n (choose whatever makes
sense if either α or β is zero). We calculate

lim
r→0

dα

dr
= lim

r→0

γ ′′
2 (r)µ(r) − γ ′

2(r)µ′(r)

µ2(r)

= lim
r→0

γ ′′′
2 (r)

2µ′(r)
− lim

r→0

µ′′(r)

2µ′(r)

γ ′
2(r)

r

r

µ(r)

= γ ′′′
2 (0)

2µ′(0)
− γ1(0)γ ′′′

2 (0)γ ′′
2 (0)

2(µ′(0))2

= 0

since µ′′(0) = γ1(0)γ ′′′
2 (0) and µ′(0) = γ1(0)γ ′′

2 (0) > 0. Converting to Cartesian
coordinates on the disk, we get

X(θ, x, y) = α(x, y)
∂

∂θ
− β(x, y) y

∂

∂x
+ β(x, y) x

∂

∂y
,

and linearizing the Reeb vector field along the center orbit yields

DX(θ, 0, 0) =
⎛⎝0 0 0

0 0 −β(0)
0 β(0) 0

⎞⎠ .

The linearization of the Reeb flow is given by

Dφt (θ, 0, 0) =
⎛⎝1 0 0

0 cosβ(0)t − sinβ(0)t
0 sinβ(0)t cosβ(0)t

⎞⎠ (2.2)

with

�(t) = eβ(0)tJ , J =
(

0 −1
1 0

)
.

The spectrum of �(t) is given by

σ
(
�(t)

) = {e±iβ(0)t}.
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The binding orbit has period 2πγ1(0), since

γ1(0)β(0) = −γ ′′
1 (0)

γ ′′
2 (0)

/∈ Z,

and it is nondegenerate and elliptic.

Example 2.2
For the contact form T dθ + (1/k)(x dy−y dx) = T dθ + (r2/k)dφ the central orbit
S1 × {0} is degenerate, but

λ = (1 − r2)(T dθ + r2

k
dφ)

is a local model near the binding if

k, T > 0, kT /∈ Z, and kT ≥ 1

2
.

In this case,

µ(r) = 2rT

k
(1 − r2)2 > 0 and

γ ′′
1 (0)

γ ′′
2 (0)

= −kT ,

and we note that

A(r) = 1

µ2(r)

(
γ ′′

2 (r)γ ′
1(r) − γ ′′

1 (r)γ ′
2(r)

) = 4kr

T (1 − r2)4
.

If

α(r)

β(r)
= −γ ′

2(r)

γ ′
1(r)

= 1 − 2r2

kT
= m

n

for integers n,m, then the invariant torus Tr is foliated with periodic orbits. The
case m = 0 is only possible if r = 1/

√
2. If r is sufficiently small, then |m| ≥ 2.

Indeed, we would otherwise be able to find sequences rl ↘ 0 and {nl} ⊂ Z such that
kT /(1 − 2r2

l ) = nl , which is impossible. The binding orbit has period 2πT while
the periodic orbits close to the binding orbit have much larger periods equal to

τ = 2πTm
(1 − r2)2

1 − 2r2
.

Example 2.3
Consider the contact form λ = T (1 − r2)dθ + (r2/k)dφ on S1 × D. It is also a
local model near the binding if k, T > 0, kT ≥ 1/2, and kT is not an integer. We
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even have A(r) ≡ 0. In contrast to Example 2.2, if kT /∈ Q, then the invariant tori Tr

carry no periodic orbits. If kT = n/m ∈ Q but not in Z, all invariant tori are foliated
with periodic orbits of period 2πmT with |m| ≥ 2 while the binding orbit has period
2πT . The function A(r) is identically zero. This is the contact form on the irrational
ellipsoid in R4.

The following proposition is essentially due to Wendl. The construction in the proof
was used by Thurston and Winkelnkemper [35] to show existence of contact forms on
closed 3-manifolds.

PROPOSITION 2.4 ([39, Proposition 1])
Let M be a 3-dimensional manifold given by an open book decomposition

M = W (h) ∪Id (∂W × D2)

as described in Theorem 1.2. We denote the pages by

Fα := (W × {α}) ∪Id (∂W × Iα), 0 ≤ α < 2π,

where Iα := {reiα ∈ D | 0 < r < 1}, and we denote the binding ∂W × {0} by K .
Moreover, let λ2 be a contact form on ∂W ×D which is a local model near the binding
on each connected component of ∂W × D. Then there is a smooth family of 1-forms
(λδ)0≤δ<1 on M such that the following hold.
• The form λ0 is a confoliation 1-form; that is, λ0 ∧ dλ0 ≥ 0, and ker λ0 agrees

with the tangent spaces to the pages Fϑ away from the binding.
• For δ > 0, the forms λδ are contact forms such that ker λδ is supported by the

above open book. In particular, the Reeb vector fields Xλδ
are transverse to the

pages Fα , and the binding K consists of periodic orbits of Xλδ
.

• The forms λδ agree with the local model λ2 near the binding. In particular, the
binding orbits are nondegenerate and elliptic.

Proof
We first construct contact/confoliation forms λ1 on W (h), depending smoothly on a
parameter δ ≥ 0, that we control well near the boundary ∂W (h) ≈ ∂W × S1. Then
we glue these forms together with λ2 in a smooth way to obtain a contact form on
W (h) ∪Id (∂W ×D2) for δ > 0 or a confoliation form for δ = 0. This procedure was
used by Thurston and Winkelnkemper [35], where they showed that every open book
is supported by some contact structure.

Starting with an open book as above, we can find a collar neighborhood C of
∂W so that h(t, θ) = (t, θ) for all (t, θ) ∈ C. Here we identify (C, ∂W ) with



HOLOMORPHIC OPEN BOOK DECOMPOSITIONS 41

([0, ε] × (
⋃̇

nS
1), {0} × (

⋃̇
nS

1)), where we take an n-fold disjoint union of circles
S1 ≈ R/2πZ according to the number n of components of ∂W .

We claim that there is an area form � on W that satisfies
•

∫
W
� = 2πn,

• �|C = dt ∧ dθ.

Indeed, start with any area form �′ so that
∫
W
�′ = 2πn. Then we have �′|C =

f ′(t, θ)dt∧dθ with a positive smooth function f ′ (after switching signs if necessary).
Now pick a new smooth positive function f which is equal to some constant c if
t ≤ (1/3)ε and which agrees with f ′ if t ≥ (2/3)ε so that the resulting area form
� still satisfies

∫
W
� = 2πn. Do one component of ∂W at a time. Rescaling the

t-coordinate, we may assume that c = 1.
Let α1 be any 1-form on W which equals (1 + t) dθ near ∂W . Then by Stokes’s

theorem we obtain∫
W

(� − dα1) = 2πn −
∫
∂W

α1 = 2πn +
∫
∂W

dθ = 0.

The 2-form �−dα1 on W is closed and vanishes near ∂W . Then there exists a 1-form
β on W with

dβ = � − dα1

and β ≡ 0 near ∂W . Now define α2 := α1 + β. Then α2 satisfies the following:

• dα2 is an area form on W inducing the same orientation as �, (2.3)

• α2 = (1 + t) dθ near ∂W. (2.4)

The set of 1-forms on W satisfying (2.3) and (2.4) is therefore nonempty and also
convex. We define the following 1-form on W × [0, 2π], where α is any 1-form on
W satisfying (2.3) and (2.4):

α̃(x, τ ) := τα(x) + (2π − τ )(h∗α)(x).

This 1-form descends to the quotient W (h), and the restriction to each fiber of the
fiber bundle W (h)

π→ S1 satisfies condition (2.3). Moreover, since h ≡ Id near ∂W ,
we have α̃(x, τ ) = 2π(1 + t) dθ for all (x, τ ) = ((t, θ), τ ) near ∂W (h) = ∂W × S1.
Let dτ be a volume form on S1. We claim that

λ1 := −δα̃ + π∗dτ
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are contact forms on W (h) whenever δ > 0 is sufficiently small. Pick (x, τ ) ∈ W (h),
and let {u, v,w} be a basis of T(x,τ )W (h) with π∗u = π∗v = 0. Then

(λ1 ∧ dλ1)(x, τ )(u, v,w)

= δ2(α̃ ∧ dα̃)(x, τ )(u, v,w) − δ [dτ (π∗w) dα̃(x, τ )(u, v)]

�= 0

for sufficiently small δ > 0, and dλ1 is a volume form on W . Now we have to continue
the contact forms λ1 beyond ∂W (h) ≈ ∂W × S1 onto ∂W × D2. At this point it is
convenient to change coordinates. We identify C × S1 with ∂W × (D2

1+ε\D2
1), where

D2
ρ is the 2-disk of radius ρ. Using polar coordinates (r, φ) on D2

1+ε with 0 ≤ φ ≤ 2π
and 0 < r ≤ 1 + ε, our old coordinates are related to the new ones by

∂W × (D2
1+ε\D2

1) � (θ, r, φ) ≈ (θ, 1 + t, τ ) ∈ C × S1,

and λ1 is given by

λ1 = − δ

2π
r dθ + dφ

on ∂W × (D2
1+ε\D2

1), with ε sufficiently small so that (2.4) holds. From now on we
drop the factor 1/2π , absorbing it into the constant δ. We have to extend this now
smoothly to a contact form on ∂W ×D2

1+ε which agrees with λ2 near {r = 0}. We set

λ = γ1(r) dθ + γ2(r) dφ,

where γ1, γ2 satisfy the conditions in Definition 2.1 for small r , say r ≤ ε0, and

γ1(r) = −δr, γ2(r) = 1 for r ≥ 1 − ε0.

If we write γ (r) = γ1(r) + iγ2(r) = ρ(r) eiα(r), then

µ(r) := γ1(r)γ ′
2(r) − γ ′

1(r)γ2(r) = �(iγ (r) γ ′(r)) = ρ2(r)α′(r),

which has to be positive. Also recall from Definition 2.1 that

γ1(0) > 0 and γ ′
1(r) < 0 if r > 0,

hence the curves γ = γδ have to turn counterclockwise in the first quadrant starting
at the point (γ1(0), 0) and later connecting with (−δ(1 − ε0), 1). In the case where
δ > 0, the Reeb vector fields are given by

Xδ(θ, r, φ) = γ ′
2(r)

µ(r)

∂

∂θ
− γ ′

1(r)

µ(r)

∂

∂φ
,
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and, in particular,

Xδ(θ, r, φ) = ∂

∂φ
for r ≥ 1 − ε0, (2.5)

which implies that the Reeb vector fieldsXδ converge as δ ↘ 0. In addition to λδ being
contact forms for δ > 0, we also want the given open book decomposition to support
ker λδ , hence Xδ needs to be transverse to the pages of the open book decomposition
which is equivalent to γ ′

1(r) �= 0. A curve γ (r) fulfilling these conditions can clearly
be constructed. �

The following result shows that we can always assume that a Giroux contact form is
equal to any of the forms provided by Proposition 2.4.

PROPOSITION 2.5
Let M be a closed 3-dimensional manifold with contact structure ξ . Then, for every
δ > 0, there is a diffeomorphism ϕδ : M → M such that ker λδ = ϕ∗ξ where λδ is
given by Proposition 2.4.

Proof
Existence of an open book decomposition supporting ξ follows from the existence
part of Giroux’s theorem. On the other hand, Proposition 2.4 yields contact forms λδ

such that ker λδ is also supported by the same open book decomposition as ξ for any
δ > 0. By the uniqueness part of Giroux’s theorem, ξ and ker λδ are diffeomorphic. �

It follows from our previous construction of the forms λδ that λ0 satisfies λ0 ∧dλ0 > 0
on ∂W ×D1−ε0 and that λ0 = dφ otherwise. For δ → 0, the Reeb vector fields Xδ will
converge to some vector field X0, which is the Reeb vector field of λ0 if r < 1 − ε0

and which equals ∂

∂φ
everywhere else.

PROPOSITION 2.6
Let M be a closed 3-dimensional manifold with an open book decomposition and a
family of 1-forms λδ , δ ≥ 0 as in Proposition 2.4. Then we have
• a smooth family (J̃δ)δ≥0 of almost-complex structures on T (R × M) which

are R-independent and which satisfy J̃δ(Xδ) = −∂/∂τ , where τ denotes the
coordinate on R, so that Jδ := J̃δ|ker λδ

are dλδ-compatible whenever λδ is a
contact form;

• a parameterization of the Giroux leaves uα : Ṡ → M , α ∈ [0, 2π], where
Ṡ = S\{p1, . . . , pn} and where S is a closed surface; and

• a smooth family of smooth functions aα : Ṡ → R

such that ũα = (aα, uα) : Ṡ → R × M is a family of embedded J̃0-holomorphic
curves for a suitable smooth family of complex structures jα on S which restrict to
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the standard complex structure on the cylinder [0,+∞) × S1 after introducing polar
coordinates near the punctures. Moreover, all the punctures are positive∗ the family
(ũα)0≤α≤2π is a finite energy foliation, and the curves ũα are J̃δ-holomorphic near the
punctures.

Proof
We parameterize the leaves of the open book decomposition uα : Ṡ → M , 0 ≤ α <

2π , and we assume that they look as follows near the binding:

uα : [0,+∞) × S1 −→ S1 × D1,

uα(s, t) = (
t, r(s)eiα

)
,

(2.6)

where r are smooth functions with lims→∞ r(s) = 0 to be determined shortly. We
use the notation (r, φ) for polar coordinates on the disk D = D1. We identify some
neighborhood U of the punctures of Ṡ with a finite disjoint union of half-cylinders
[0,+∞) × S1. Recall that the binding orbit is given by

x(t) =
( t

γ1(0)
, 0, 0

)
, 0 ≤ t ≤ 2πγ1(0)

and that it has minimal period T = 2πγ1(0). We define smooth functions aα : Ṡ → R

by

aα(z) :=
{∫ s

0 γ1

(
r(s ′)

)
ds ′ if z = (s, t) ∈ [0,+∞) × S1 ⊂ U,

0 if z /∈ U

so that

u∗
αλ0 ◦ j = daα,

where j is a complex structure on Ṡ which equals the standard structure i on [0,+∞)×
S1 (i.e., near the punctures). We want to turn the maps ũα = (aα, uα) : Ṡ → R × M

into J̃0-holomorphic curves for a suitable almost-complex structure J̃0 on R × M .
Recall that the contact structure is given by

ker λδ = Span{η1, η2} = Span
{ ∂

∂r
,−γ2(r)

∂

∂θ
+ γ1(r)

∂

∂φ

}
.

We define complex structures Jδ : ker λδ → ker λδ by

Jδ(θ, r, φ)
(

− γ2(r)
∂

∂θ
+ γ1(r)

∂

∂φ

)
:= − 1

h(r)

∂

∂r
(2.7)

∗A puncture pj is called positive for the curve (aα, uα) if limz→pj
aα(z) = +∞.
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and

Jδ(θ, r, φ)
∂

∂r
:= h(r)

(
− γ2(r)

∂

∂θ
+ γ1(r)

∂

∂φ

)
,

where h : (0, 1] → R\{0} are suitable smooth functions. Also recall that γ1, γ2

depend on δ away from the binding orbit. We want Jδ to be compatible with dλδ , that
is, we want

dλδ(η1, Jη1) = h(r)µ(r) > 0 and dλδ(η2, Jη2) = µ(r)

h(r)
> 0

so that h(r) > 0. We also demand that Jδ extends smoothly over the binding {r = 0}.
Expressing the vectors η1 and η2 in Cartesian coordinates, we have

η1 = 1

r

(
x

∂

∂x
+ y

∂

∂y

)
and

η2 = −γ2(r)
∂

∂θ
+ γ1(r) x

∂

∂y
− γ1(r) y

∂

∂x
.

We introduce the following generators of the contact structure:

ε1 := γ1(r)
∂

∂y
− xγ2(r)

r2

∂

∂θ

= yγ1(r)

r
η1 + x

r2
η2

and

ε2 := γ1(r)
∂

∂x
+ yγ2(r)

r2

∂

∂θ

= xγ1(r)

r
η1 − y

r2
η2.

We compute from this

η1 = 1

rγ1(r)
(y ε1 + x ε2), η2 = x ε1 − y ε2.

Now

Jδε1 = yγ1(r)h(r)

r
η2 − x

r2h(r)
η1

=
(1

r
xyγ1(r)h(r) − xy

r3h(r)γ1(r)

)
ε1

−
(1

r
y2γ1(r)h(r) + x2

r3γ1(r)h(r)

)
ε2
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and

Jδε2 = xγ1(r)h(r)

r
η2 + y

r2h(r)
η1

=
(

− 1

r
xyγ1(r)h(r) + xy

r3h(r)γ1(r)

)
ε2

+
(1

r
x2γ1(r)h(r) + y2

r3γ1(r)h(r)

)
ε1.

Inserting x = r cosφ, y = r sinφ, and demanding that the limit is φ-independent as
r → 0, we arrive at the condition that r h(r) γ1(r) ≡ ± 1 for small r . Recalling that
we need h > 0, we obtain

h(r) = 1

r γ1(r)
for small r.

As usual, we continue Jδ to an almost-complex structure J̃δ on R × M by setting

J̃δ(θ, r, φ)
∂

∂τ
:= Xδ(θ, r, φ),

where τ denotes the coordinate in the R-direction. We emphasize that J̃δ also makes
sense for δ = 0. We now arrange r(s) in (2.6) such that the Giroux leaves ũα = (aα, uα)
become J̃0-holomorphic curves.∗ We compute for r ≤ 1 − ε0

∂sũα + J̃0(uα)∂t ũα = γ1(r)
∂

∂τ
+ r ′ ∂

∂r
+ J̃0(uα)

( ∂

∂θ

)
= γ1(r)

∂

∂τ
+ r ′ ∂

∂r
+ J̃0(uα)

(
γ1(r)Xδ(uα)

)
+ J̃0(uα)

( ∂

∂θ
− γ1(r)Xδ(uα)

)
= r ′ ∂

∂r
+ J̃0(uα)

(γ ′
1(r)

µ(r)

(
γ1(r)

∂

∂φ
− γ2(r)

∂

∂θ

))
=

(
r ′ − γ ′

1(r)

µ(r)h(r)

) ∂

∂r
,

hence the Giroux leaves satisfy the equation if we choose r to be a solution of the
ordinary differential equation

r ′(s) = γ ′
1(r(s))

µ(r(s))h(r(s))
.

∗The calculation shows that we can make them Jδ-holomorphic for all δ ≥ 0 near the binding.
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Note that r ′(s) < 0. We also choose h(r) ≡ 1 for r ≥ 1 − ε0. We continue the
almost-complex structures Jδ : ker λδ → ker λδ (which were only defined near the
binding) smoothly to all of M . Away from the binding we have Xδ = ∂/∂φ, and we
extend Jδ as before to T (R × M). Away from the binding, if δ = 0, we have that
ker λ0 coincides with the tangent spaces of the pages of the open book decomposition.
Because aα is constant away from the binding, the solutions ũα which we constructed
near the binding fit together smoothly with the pages of the open book decomposition
and solve the holomorphic curve equation for the almost-complex structure J0. �

Remark 2.7
Near the binding orbit the function r(s) satisfies a differential equation of the form

r ′(s) = �
(
r(s)

)
r(s) := γ ′

1(r(s))γ1(r(s))

µ(r(s))
r(s),

and

lim
r→0

�(r) = γ ′′
1 (0)

γ ′′
2 (0)

=: κ.

Writing r(s) = c(s)eκs , the function c(s) satisfies c′(s) = (�(r(s)) − κ)c(s), and
hence it is a decreasing function which converges to a constant as s → +∞.

We return to Examples 2.2 and 2.3, and we compute r(s) for large s. The differential
equation in the case of Example 2.3 for large s is

r ′(s) = γ ′
1(r(s))γ1(r(s))

µ(r(s))
r(s) = −kT

(
1 − r2(s)

)
r(s),

so that

r(s) = 1√
1 + c e2kT s

,

where c is a constant. In Example 2.2, the differential equation reads

r ′(s) = γ ′
1(r(s))γ1(r(s))

µ(r(s))
r(s) = − kT

1 − r2(s)
r(s),

and solutions satisfy

r(s) = c e−kT s e(1/2)r2(s).

2.2. Functional analytic setup and the implicit function theorem
In the following theorem we prove the existence of a smooth family of solutions near a
given solution. In Proposition 2.6, we constructed a finite energy foliation for the data
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(λ0, J0) with vanishing harmonic form. The form λ0, however, is only a confoliation
form. We produce solutions for the perturbed data (λδ, Jδ), and harmonic forms appear
if the surface S is not a sphere. The key result is an application of the implicit function
theorem in a suitable setting.

THEOREM 2.8
Assume one of the following.
(1) Let (a0, u0) : Ṡ → R × M be one of the J̃0-holomorphic curves described in

Proposition 2.6 with complex structure j0 on S (we refer to such u0 as a Giroux
leaf) and confoliation form λ0.

(2) Let (Ṡ, j0, a0, u0, γ0) be a solution of the differential equation (1.1) for some
dλ0-compatible complex structure J0 : ker λ0 → ker λ0 which, near the bind-
ing orbit, agrees with (2.7), and where λ0 is a contact form which is a local
model near the binding. Assume that u0 is an embedding and that it is of the
form u0 = φg(v0), where g : S → R is a smooth function, φ is the flow of the
Reeb vector field, and where v0 : Ṡ → M is a Giroux leaf as in Proposition
2.6.

(3) Let Jδ be a smooth family of dλδ-compatible complex structures also agreeing
with (2.7) near the binding orbit, where (λδ)−ε<δ<+ε, ε > 0 is a smooth family
of 1-forms which are contact forms for δ �= 0 and local models near the
binding. Then there is a smooth family

(S, jδ,τ , aδ,τ , uδ,τ , γδ,τ , Jδ)−ε<δ,τ<+ε

of solutions of (1.1) so that uδ,τ (Ṡ) ∩ uδ,τ ′(Ṡ) = ∅ whenever τ �= τ ′, and each
uδ,τ is an embedding.

Proof
In both cases we wish to find solutions of (1.1) for the data (λδ, Jδ) of the form

uδ(z) = φfδ (z)

(
u0(z)

)
, aδ(z) = bδ(z) + a0(z),

where t �→ φt = φδ
t is the flow of the Reeb vector field Xδ of λδ and where

bδ + ifδ : S → C is a smooth function defined on the unpunctured surface. We
derive an equation for the unknown function bδ + ifδ . From now on we suppress the
superscript δ in the notation unless for δ = 0. Because of the first equation in (1.1),
the complex structure on S is then determined by f (denote it by j = jf ) and is given
by

jf (z) = (
πλT u(z)

)−1 ◦ J
(
u(z)

) ◦ πλT u(z). (2.8)
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Note that this is well defined because u is transverse to the Reeb vector field so that
πT u(z) : TzS → ker λ(u(z)) is an isomorphism. By the second equation of (1.1), we
then have to solve the equation df ◦ jf + u∗

0λ ◦ jf = da + γ for a, f, γ on Ṡ which
is equivalent to the equation

∂̄jf (a + if ) = u∗
0λ ◦ jf − i(u∗

0λ) − γ − i(γ ◦ jf ). (2.9)

Recall that we are looking for a of the form a = a0 + b, where b is a suitable real-
valued function defined on the whole surface S. We obtain the differential equation

∂̄jf (b + if ) = u∗
0λ ◦ jf − i(u∗

0λ) − ∂̄jf a0 − γ − i(γ ◦ jf ), (2.10)

and it follows from a straightforward calculation (see the appendix) that all expressions
on the right-hand side of (2.10) are bounded near the punctures; in particular, they
are contained in the spaces Lp(T ∗S ⊗ C) for any p. This is what the assumption
κ ≤ −(1/2) from Definition 2.1 is needed for. We work in the function space b+ if ∈
W 1,p(S,C), where p > 2. For any complex structure j on S, the space Lp(T ∗S ⊗ C)
of complex-valued 1-forms of class Lp decomposes into complex linear and complex
antilinear forms (with respect to j ). We use the notation

Lp(T ∗S ⊗ C) = Lp(T ∗S ⊗ C)1,0
j ⊕ Lp(T ∗S ⊗ C)0,1

j .

The operator b + if �→ ∂̄jf (b + if ) is then a section in the vector bundle

Lp(T ∗S ⊗ C)0,1 :=
⋃

b+if∈W 1,p(S,C)

{b + if } × Lp(T ∗S ⊗ C)0,1
jf

→ W 1,p(S,C).

This vector bundle is of course trivial, but here are some explicit local trivializations
for f, g ∈ W 1,p(S,R) sufficiently close to each other:

�fg : Lp(T ∗S ⊗ C)0,1
jf

−̃→Lp(T ∗S ⊗ C)0,1
jg

(2.11)

τ �−→ τ + i(τ ◦ jg).

If we write

τ + i(τ ◦ jg) = τ ◦ (IdT S − jf ◦ jg),

we see that �fg is invertible with

�−1
fg τ = τ ◦ (IdT S − jf ◦ jg)−1.

It follows from the Hodge decomposition theorem that every cohomology class [σ ] ∈
H 1(S,R) has a unique harmonic representative ψj (σ ) ∈ H 1

j (S), where H 1
j (S) is
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defined as

H 1
j (S) := {

γ ∈ E1(S)
∣∣ dγ = 0, d(γ ◦ j ) = 0

}
(2.12)

and where E1(S) denotes the space of all (smooth) real-valued 1-forms on S, and
we write E0,1(S) = E0,1

j (S) for the space of complex antilinear 1-forms on S with
respect to j , that is, complex-valued 1-forms σ such that i σ + σ j = 0. Note that
our definition coincides with the set of closed and co-closed 1-forms on S. Moreover,
by elliptic regularity, we may also consider Sobolev forms. We identify H 1(S,R)
with R2g , and we consider the following parameter-dependent section in the bundle
Lp(T ∗S ⊗ C)0,1 → W 1,p(S,C)

F : W 1,p(S,C) × R2g −→ Lp(T ∗S ⊗ C)0,1 (2.13)

F (b + if, σ ) := ∂̄jf (b + if ) − u∗
0λ ◦ jf + i(u∗

0λ)

+ ∂̄jf a0 + ψjf (σ ) + i
(
ψjf (σ ) ◦ jf

)
with jf as in (2.8). Recalling that z �→ jf (z) may not be differentiable, we interpret
the equation d(γ ◦ jf ) = 0 in the sense of weak derivatives. The solution set of (2.10)
is then the zero set of F . We consider the real parameter δ which we dropped from
the notation, fixed at the moment. For g ≡ 0 and b + if small in the W 1,p-norm,
we consider the composition F̂ (b + if, σ ) = �fg(F (b + if, σ )). Its linearization
in the point (b + if, σ ) = (0, σ0), where σ0 is defined by ψj0 (σ0) = γ0 and where
F (0, σ0) = 0, is

DF̂ (0, σ0) : W 1,p(S,C) × R2g −→ Lp(T ∗S ⊗ C)0,1
j0

DF̂ (0, σ0)(ζ, σ ) = ∂̄j0ζ + ψj0 (σ ) + i(ψj0 (σ ) ◦ j0) + Lζ,

where

L : W 1,p(S,C) → W 1,p(T ∗S ⊗ C)0,1
j0

↪→ Lp(T ∗S ⊗ C)0,1
j0

is the compact linear map

Lζ = −1

2
u∗

0λ ◦ (Aζ + j0Aζj0) + i

2
u∗

0λ ◦ (j0Aζ − Aζj0) + Bζ + i Bζ j0,

where

Bζ = d

dτ

∣∣∣∣
τ=0

ψjτ k
(σ0), ζ = h + ik,
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and where

Aζ = d

dτ

∣∣∣∣
τ=0

jτ k = h (πλT u0)−1[J (u0)DXλ(u0)

−DXλ(u0)J (u0) + DJ (u0)Xλ(u0)](πλT u0).

The linear term L therefore does not contribute to the Fredholm index of DF̂ (0, σ0).
We note that the linear map ζ �→ Lζ only depends on the imaginary part of ζ . We
claim that the operator

W 1,p(S,C) × R2g −→ Lp(T ∗S ⊗ C)0,1
j0

(ζ, σ ) �−→ ∂̄j0ζ + ψj0 (σ ) + i(ψj0 (σ ) ◦ j0)

is a surjective Fredholm operator of index 2. Then we would have ind(DF̂ (0, σ0)) = 2
as well. Here is the argument: The Riemann-Roch theorem asserts that the kernel and
the cokernel of the Cauchy-Riemann operator ∂̄j (acting on smooth complex-valued
functions on S) are both finite-dimensional and that

dimR ker ∂̄j − dimR

(
E0,1(S)/Im ∂̄j

) = 2 − 2g,

where g is the genus of the surface S. The only holomorphic functions on S are the
constant functions, hence E0,1(S)/Im ∂̄j has dimension 2g.

On the other hand, the vector space H 1
j (S) of all (real-valued) harmonic 1-forms

on S also has dimension 2g (see [15]). We now consider the linear map

� : H 1
j (S) −→ E0,1(S)/Im ∂̄j

�(γ ) := [γ + i(γ ◦ j )],

where [ . ] denotes the equivalence classes of (0, 1)-forms. Assume that �(γ ) = [0],
that is, that there is a complex-valued smooth functionf = u+iv onS such that ∂̄j f =
γ +i(γ ◦j ). Since γ is a harmonic 1-form, we conclude that d(dv◦j ) = d(du◦j ) = 0
(i.e., both u and v are harmonic). Since there are only constant harmonic functions
on S we obtain γ = 0 (i.e., � is injective and also bijective). Hence, (0, 1)-forms
γ + i(γ ◦ j ) with γ ∈ H 1

j (S) make up the cokernel of ∂̄j : C∞(S,C) → E0,1(S).
This proves the claim that the operator DF̂ (0, σ0) is Fredholm of index 2. We

now show that the operator DF̂ (0, σ0) is surjective. Using the decomposition

Lp(T ∗S ⊗ C)0,1
j0

= R(∂̄j0 ) ⊕ H 1
j0

(S)
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and denoting the corresponding projections by π1, π2, we see that it suffices to prove
the surjectivity of the operator

T : W 1,p(S,C) → R(∂̄j0 )

T ζ := ∂̄j0ζ + π1(Lζ ),

which is a Fredholm operator of index 2. Assume that ζ ∈ ker T . Unless ζ ≡ 0, the
set {z ∈ S | ζ (z) = 0} consists of finitely many points by the similarity principle (see
[23]), and the local degree of each zero is positive. On the other hand, the sum of all
the local degrees has to be zero, hence elements in the kernel of T are nowhere zero.
Actually, if h + ik ∈ ker T , then even k is nowhere zero because h + c + ik ∈ ker T
for any real constant c since the zero-order term L only depends on the imaginary part
of ζ . Therefore,∗ dim ker T ≤ 2, and since the Fredholm index of T equals 2, we
actually have dim ker T = 2. This proves the surjectivity of T and also of DF̂ (0, σ0)
so that the set M of all pairs (b + if, γ ) solving the differential equation (2.10) is a
2-dimensional manifold with T(0,γ0)M = kerDF̂ (0, γ0). If we add a real constant to
b + if , then we obtain again a solution of (2.10). If we divide M by this R-action,
then we obtain a 1-dimensional family of solutions (ũτ )−ε<τ<ε with ũτ = (aτ , uτ ) for
which uτ = φfτ (u0), and the functions fτ do not vanish at any point. Therefore, we
have u0(Ṡ) ∩ uτ (Ṡ) = ∅ and also uτ ′(Ṡ) ∩ uτ (Ṡ) = ∅ if τ �= τ . Moreover, the maps
uτ are transverse to the Reeb vector field by construction. �

3. From local foliations to global ones
The aim of this section is to show that a family of solutions produced by the implicit
function theorem (see Theorem 2.8) can be enlarged further. For this purpose, a
compactness result is needed for which we are setting the stage now.

First, we summarize a result by Siefring which will be used later on.

THEOREM 3.1 ([31, Theorem 2.2])
Let ũ ∈ M(P, J ) and ṽ ∈ M(P, J ), let maps U,V : [R,∞) × S1 → C∞(P ∗ξ )
be asymptotic representatives of ũ and ṽ, respectively, and assume that U − V does
not vanish identically. Then there exists a negative eigenvalue λ of the asymptotic
operator AP,J and an eigenvector e with eigenvalue λ so that

U (s, t) − V (s, t) = eλs
(
e(t) + r(s, t)

)
,

∗Indeed, otherwise we would be able to find three linearly independent elements in the kernel ζ1, ζ2, ζ3. Because
C has real dimension 2 we can find real numbers α1, α2, α3, not all simultaneously zero, and a point z ∈ S such
that

∑3
j=1 αj ζj (z) = 0. Then ζ = ∑3

j=1 αj ζj is in the kernel of T and ζ (z) = 0, which is a contradiction.
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where the map r satisfies for every (i, j ) ∈ N2 a decay estimate of the form

|∇ i
s∇j

t r(s, t)| ≤ Mije
−ds

with Mij and d positive constants.

Our situation is less general than in [31], so we will explain the notation in the context
of this paper. The setup is a manifold M with contact form λ and contact structure
ξ = ker λ. Consider a periodic orbit P̄ of the Reeb vector field Xλ with period T , and
we may assume here that T is its minimal period. We introduce P (t) := P̄ (T t/2π)
such that P (0) = P (2π). If J : ξ → ξ is a dλ-compatible complex structure, then
the set of all J̃ -holomorphic half-cylinders

ũ = (a, u) : [R,∞) × S1 → R × M, S1 = R/2πZ

for which |a(s, t) − T s/2π | and |u(s, t) − P (t)| decay at some exponential rate (in
local coordinates near the orbit P (S1)) is denoted by M(P, J ). Note that it is assumed
here that the domain [R,∞) × S1 is endowed with the standard complex structure. A
smooth mapU : [R,∞)×S1 → P ∗ξ for whichU (s, t) ∈ ξP (t) is called an asymptotic
representative of ũ if there is a proper embedding ψ : [R,∞) × S1 → R × S1

asymptotic to the identity so that

ũ
(
ψ(s, t)

) = (
T s/2π, expP (t) U (s, t)

)
, ∀ (s, t) ∈ [R,∞) × S1

(exp is the exponential map corresponding to some metric on M , e.g., the one induced
by λ and J ). Every ũ ∈ M(P, J ) has an asymptotic representative (see [31]). The
asymptotic operator AP,J is defined as follows:

(AP,J h)(t) := − T

2π
J
(
P (t)

)( d

ds

∣∣∣
s=0

Dφ−s(φs(P (t)))h(φs(P (t)))
)
,

where φs is the flow of the Reeb vector field and where h is a section in P ∗ξ →
S1. Because the Reeb flow preserves the splitting TM = RXλ ⊕ ξ we have also
(AP,J h)(t) ∈ ξP (t).

We compute the asymptotic operator AP,J for the binding orbit

P̄ (t) =
( t

γ1(0)
, 0, 0

)
∈ S1 × R2.

Recall that the above periodic orbit has minimal period T = 2πγ1(0). Using

φs

(
P (t)

) = φs(t, 0, 0) =
(
t + s

γ1(0)
, 0, 0

)
,
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formula (2.2) for the linearization of the Reeb flow with h(t) = (0, ζ (t), η(t)), and
the fact that J (t, 0, 0) ∂

∂x
= ∂

∂y
and J (t, 0, 0) ∂

∂y
= − ∂

∂x
, we compute

(AP,J h)(t) = −γ1(0)J (t, 0, 0)

(
h′(t)
γ1(0)

+
(

0 β(0)
−β(0) 0

)(
ζ (t)
η(t)

))
= −J0 h

′(t) − γ1(0)β(0)h(t)

= −J0 h
′(t) + κ h(t),

where J0 =
(

0 −1
1 0

)
and κ = γ ′′

1 (0)/γ ′′
2 (0) ∈ (−1, 0). Hence λ ∈ σ (AP,J ) precisely

if

h′(t) = (λ − κ) J0 h(t) and h(2π) = h(0)

(i.e., σ (AP,J ) = {κ + l | l ∈ Z}), and the largest negative eigenvalue is given by κ .
The corresponding eigenspace consists of all constant vectors h(t) ≡ const ∈ R2.
The eigenspace for the eigenvalues κ + l consists of all

h(t) = eJ0l th0, with h0 ∈ R2.

THEOREM 3.2 (Compactness)
Let λ be a contact form on M which is a local model near the binding (of the Giroux
leaf v0), and let J : ker λ → ker λ be a dλ-compatible complex structure. Consider a
smooth family of solutions (S, jτ , aτ , uτ , γτ , J )0≤τ<τ0 to equation (1.1) satisfying the
following conditions.
• We have uτ = φfτ (v0), where v0 : Ṡ → M is a Giroux leaf as in Proposition

2.6 and where fτ : S → R are suitable smooth functions.
• For any 0 ≤ τ < τ0, there is δ > 0 such that

uτ (Ṡ) ∩ uτ ′(Ṡ) = ∅ whenever 0 < |τ − τ ′| < δ.

• Assume that u0 and uτ never have identical images whenever 0 < τ < τ0.
Then the functions fτ converge uniformly with all derivatives to a smooth function
fτ0 : S → R as τ ↗ τ0. The harmonic 1-forms γτ also converge in C∞(S) to a
1-form γτ0 which is harmonic with respect to the complex structure jτ0 on Ṡ given by

jτ0 (z) := (
πλT uτ0 (z)

)−1 ◦ J
(
uτ0 (z)

) ◦ πλT uτ0 (z),

where uτ0 := φfτ0
(v0). Moreover, we can find a smooth function aτ0 on Ṡ so that

(S, jτ0, aτ0, uτ0, γτ0, J ) solves the differential equation (1.1).
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Remark 3.3
We may assume without loss of generality that v0 ≡ u0 and f0 ≡ 0. If z ∈ Ṡ, then we
denote by T (z) > 0 the positive return time of the point u0(z); that is, we have

T (z) := inf
{
T > 0

∣∣φT (u0(z)) ∈ u0(Ṡ)
}
< +∞.

We claim that the return time z �→ T (z) extends continuously over the punctures of
the surface, and that therefore there is an upper bound

T := sup
z∈Ṡ

T (z) < ∞.

Using (2.1) and (2.6), we note that, asymptotically near the punctures, φT (u0(s, t)) ∈
S1 × R2 has the following structure:

φT (u0(s, t)) = (
t + α(r(s))T , r(s) exp[i(α0 + β(r(s))T )]

)
,

where r(s) is a strictly decreasing function, α0 is some constant, and α(r), β(r) are
suitable functions for which the limits limr→0 β(r) and limr→0 α(r) exist and are not
zero. Hence, if T = T (u0(s, t)) is the positive return time at the point u0(s, t), then

T
(
u0(s, t)

) = 2π

|β(r(s))| ,

and therefore the limit for s → +∞ exists.

The remainder of this section is devoted to the proof of Theorem 3.2. We recall
that the functions aτ and fτ satisfy the Cauchy-Riemann type equation (2.9) which is

∂̄jτ (aτ + ifτ ) = u∗
0λ ◦ jτ − i(u∗

0λ) − γτ − i(γτ ◦ jτ ),

where the complex structure jτ is given by (2.8) or

jτ (z) = (
πλT u0(z)

)−1(
T φfτ (z)(u0(z))

)−1

· J (φfτ (z)(u0(z))
)
T φfτ (z)

(
u0(z)

)
πλT u0(z),

and that γτ is a closed 1-form on S with d(γτ ◦ jτ ) = 0.

The following L∞-bound is the crucial ingredient for the compactness result. We
claim that

sup
0≤τ<τ0

‖fτ‖L∞(Ṡ) ≤ T . (3.1)
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Restricting any of the solutions to a simply connected subset U ⊂ Ṡ, we can
write γτ = dhτ for a suitable function hτ : U → R, and the maps

ũτ : U → R × M, ũτ = (aτ + hτ , uτ )

are J̃ -holomorphic curves. If two such curves ũτ and ũτ ′ have an isolated intersection,
then the corresponding intersection number is positive (see [28], [5], or [27] for
positivity of (self-)intersections for holomorphic curves). We claim that

u0(Ṡ) ∩ uτ (Ṡ) = ∅, ∀ 0 < τ < τ0,

and not just for small τ as assumed. If we can show this, then (3.1) follows. Indeed, for
any z ∈ Ṡ, the function τ �→ fτ (z) is strictly increasing from f0(z) = 0, and equality
fτ (z) = T (z) would imply that uτ (z) ∈ u0(Ṡ). Arguing indirectly, we assume that the
set

O := {
τ ∈ (0, τ0)

∣∣ uτ (Ṡ) ∩ u0(Ṡ) �= ∅}
is not empty. We denote its infimum by τ̃ , which must be a positive number since
uτ (Ṡ) ∩ u0(Ṡ) = ∅ for all sufficiently small τ > 0.

We first prove that the above set is open, which implies that uτ̃ and u0 cannot
intersect. If uτ (p) = u0(q) for suitable points p, q ∈ Ṡ, then we consider locally near
these points the corresponding holomorphic curves ũτ and ũ0. Adding some constant
to the R-component of one of them, we may assume that ũτ (p) = ũ0(q). If this
intersection point is not isolated, then p and q have open neighborhoods U and V ,
respectively, on which the holomorphic curves ũτ and ũ0 agree. This implies that the
set of all points p ∈ Ṡ such that ũτ (p) is a non-isolated intersection point between ũτ

and ũ0, is open and closed, that is, it is either empty or all of Ṡ. Since we assumed that
each set uτ (Ṡ), τ > 0 is different from u0(Ṡ), we conclude that if uτ and u0 intersect,
then the intersection point of the corresponding holomorphic curves ũτ and ũ0 must
be isolated. But on the other hand, this implies that uτ ′ and u0 would also intersect for
all τ ′ sufficiently close to τ by positivity of the intersection number showing that the
set O is open.

We conclude from the above that we have a sequence τk ↘ τ̃ and pointspk, qk ∈ Ṡ

such that uτk (pk) = u0(qk). Passing to a suitable subsequence, we may assume
convergence of the sequences (pk)k∈N and (qk)k∈N to points p, q ∈ S. Because of
uτ̃ (Ṡ) ∩ u0(Ṡ) = ∅ the points p, q must be punctures, and they have to be equal
z0 = p = q ∈ S\Ṡ. The reason for this is the following. The maps uτk , u0 are
asymptotic near the punctures to a disjoint union of finitely many periodic Reeb
orbits which are not iterates of other periodic orbits. Also, different punctures always
correspond to different periodic orbits. This follows from Giroux’s result and our
constructions in Section 2 of this paper.
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We now derive a contradiction using Siefring’s result. The harmonic forms γτk in
equation (1.1) are defined on all of S. Hence they are exact on some open neighborhood
U of the puncture z0, and γτk = dhτk for suitable functions hτk onU and similarly γτ̃ =
dhτ̃ . We may also assume that jτ̃ |U = jτk |U = j0 after changing local coordinates
near z0. Then on the set U , the maps ũτk = (aτk + hτk , uτk ) and ũ0 = (a0 + h0, u0) are
holomorphic curves with ũτk (pk) = ũ0(qk) while the images of ũτ̃ and ũ0 have empty
intersection. Now let

Uτ̃ , Uτk , U0 : [R,∞) × S1 → R2

be asymptotic representatives of the holomorphic curves ũτ̃ , ũτk , ũ0, respectively.
Invoking Theorem 3.1 and our subsequent computation of the asymptotic operator
and its spectrum, we obtain the following asymptotic formulas

Uτ (s, t) − U0(s, t) = eλτ s
(
eτ (t) + rτ (s, t)

)
, τ = τ̃ , τk, s ≥ Rτ , (3.2)

where Rτ > 0 is some constant and where λτ < 0 is some negative eigenvalue of
the asymptotic operator AP,J . It is of the form λτ = κ + lτ , where lτ is an integer,
κ = γ ′′

1 (0)/γ ′′
2 (0) is not an integer, and where eτ (t) = eJ0lτ thτ , hτ ∈ R2\{0} is an

eigenvector corresponding to the eigenvalue λτ = κ + lτ . Note that the above formula
applies since Uτ − U0 cannot vanish identically. We will actually show that lτ ≡ 0.
The asymptotic representative U0 is given by

u0(s, t) = (
t, r(s)eiα0

) = (
t, U0(s, t)

)
,

using equation (2.6), and we recall that r(s) = c(s)eκs , where c(s) → c∞ > 0 as
s → +∞. An asymptotic representative of ũτ , however, is given by an expression
such as

uτ

(
ψ(s, t)

) = (
t, Uτ (s, t)

)
,

where ψ : [R,∞) × S1 → R × S1 is a proper embedding converging to the identity
map as s → +∞. Writing (s ′, t ′) = ψ(s, t), we get using equations (2.1) for the
Reeb flow

Uτ (s, t) = c(s ′)eκs
′
ei(α0+β(r(s ′))fτ (s ′,t ′))

= eκs
(
eτ + rτ (s, t)

)
.

The asymptotic formula for Uτ a priori allows for other decay rates, but κ is the only
possible one. Dividing by eκs and passing to the limit s → +∞, we obtain

eτ = c∞eiα0eiβ(0)fτ (∞),
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where fτ (∞) = lims→+∞ fτ (s, t) which is independent of t since fτ extends contin-
uously over the punctures. Hence the difference Uτ − U0 has decay rate λτ ≡ κ as
claimed unless the two eigenvectors eτ and e0 agree, which is equivalent to

fτ (∞) ∈ 2π

β(0)
Z

or τ = τ̃ in our case. The maps Uτ − U0 satisfy a Cauchy-Riemann type equation
to which the similarity principle applies so that, for every zero (s, t) of Uτ − U0, the
map σ �→ (Uτ − U0)(s + ε cos σ, t + ε sin σ ) has positive degree for small ε > 0.
The Cauchy-Riemann type equation mentioned above is derived in [31, Section 5.3]
as well as in [1, Section 3] in a slightly different context, and also in [21]. If R is
sufficiently large, then the map

S1 → S1, t �→ Wτ (R, t) := Uτ − U0

|Uτ − U0| (R, t)

is well defined, and it has degree lτ because the remainder term rτ (s, t) decays
exponentially in s. Zeros of Uτ −U0 contribute in the following way: if R′ < R such
that (Uτ − U0)(R′, t) �= 0, then

degWτ (R, ·) = degWτ (R′, ·) +
∑

{z|Uτ (z)−U0(z)=0}
o(z). (3.3)

We know already that lτ = 0 whenever τ �= τ̃ . Arguing indirectly, we assume that
lτ̃ is not zero. It would have to be negative then. Choose then R′ > 0 so large that
degWτ̃ (R′, ·) = lτ̃ < 0. For τ sufficiently close to τ̃ , we also have degWτ (R′, ·) = lτ̃ .
On the other hand, we have degWτ (R, ·) = 0 for R > R′ sufficiently large. Equation
(3.3) implies that the map Uτ − U0 must have zeros in [R′, R] × S1 to account
for the difference in degrees, but we know that there are none for τ < τ̃ . This
contradiction shows that lτ̃ �= 0 is impossible. Choose again R′ > 0 so large that
degWτ̃ (R′, ·) = 0. The degree does not change if we slightly alter τ . In particular,
we have degWτ (R′, ·) = 0 for τ > τ̃ close to τ̃ as well. For R >> R′, we have
degWτ̃ (R, ·) = 0, and we recall that

(Uτk − U0)(sk, tk) = 0, τk ↘ τ̃

for a suitable sequence (sk, tk) with sk → +∞ and that the set of zeros of Uτk −U0 is
discrete. This, however, contradicts equation (3.3) since the zeros have positive orders.
Summarizing, we have shown that the assumption O �= ∅ leads to a contradiction
which implies the a priori bound (3.1).

The monotonicity of the functions fτ in τ and the bound (3.1) imply that the
functions fτ converge pointwise to a measurable function fτ0 as τ ↗ τ0. We also



HOLOMORPHIC OPEN BOOK DECOMPOSITIONS 59

know that ‖fτ0‖L∞(Ṡ) ≤ T . We then obtain a complex structure jτ0 on Ṡ by

jτ0 (z) = (
πλT u0(z)

)−1(
T φfτ0 (z)(u0(z))

)−1

× J
(
φfτ0 (z)(u0(z))

)
T φfτ0 (z)

(
u0(z)

)
πλT u0(z).

By definition, the complex structure jτ0 is also of class L∞ and jτ (z) → j1(z)
pointwise. Our task is to improve the regularity of the limit fτ0 and the character of
the convergence fτ → fτ0 . We also have to establish convergence of the functions aτ
for τ ↗ τ0. The complex structures jτ are of course all smooth, but the limit jτ0 might
only be measurable.

3.1. The Beltrami equation
For the reader’s convenience, we briefly summarize a few classical facts from the
theory of quasiconformal mappings (see [8], [9]). The punctured surface Ṡ carries
metrics gτ , also of class L∞ for τ = τ0 and smooth otherwise, so that

gτ (z)
(
jτ (z)v, jτ (z)w

) = gτ (z)(v,w), for all v,w ∈ TzṠ.

In fact, gτ is given by

gτ (z)(v,w) = dλ
(
uτ (z)

)(
πλT uτ (z)v, J (uτ (z))πλT uτ (z)w

)
.

In the case τ = τ0, we replace πλT uτ (z) by T φfτ0 (z)(u0(z))πλT u0(z). We have
supτ ‖gτ‖L∞(Ṡ) < ∞ and gτ → gτ0 pointwise as τ ↗ τ0. Our considerations about
the regularity of the limit are of local nature, so we may replace Ṡ with a ball B ⊂ C

centered at the origin. Denoting the metric tensor of gτ by (gτ
kl)1≤k,l≤2, we define the

following complex-valued smooth functions:

µτ (z) :=
1
2 (gτ

11(z) − gτ
22(z)) + i gτ

12(z)
1
2 (gτ

11(z) + gτ
22(z)) + √

gτ
11(z)gτ

22(z) − (gτ
12(z))2

,

and we note that

sup
τ

‖µτ‖L∞(Ṡ) < 1

and that µτ → µτ0 pointwise. We view the functions µτ as functions on the whole
complex plane by trivially extending them beyond B. Then they are also τ -uniformly
bounded in Lp(C) for all 1 ≤ p ≤ ∞ and µτ → µτ0 in Lp(C) for 1 ≤ p < ∞ by
Lebesgue’s theorem. If we now solve the Beltrami equation

∂ατ = µτ ∂ατ
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for τ < τ0 so that ∂ατ (0) �= 0, then ατ is a diffeomorphism of the plane onto itself so
that

gτ

(
ατ (z)

)(
T ατ (z)v, T ατ (z)w

) = λτ 〈v,w〉 if z ∈ B,

where 〈 . , . 〉 denotes the standard Euclidean scalar product on R2 and where λτ is a
positive function. We then get

T ατ (z) ◦ i = jτ (ατ (z)) ◦ T ατ (z), 0 ≤ τ < 1 if z ∈ B.

For Hölder-continuous µτ the map ατ exists, and it is a C1-diffeomorphism. This is
a classical result by Korn and Lichtenstein [26] (more modern proofs may be found,
e.g., in [11] and [13]). In our case, we have smooth solutions ατ belonging to smooth
µτ , but we only know that the µτ converge pointwise as τ ↗ 1. On the other hand,
we would like to derive a decent notion of convergence for the transformations ατ . An
interesting case for us is the one where µ is only a measurable function. Results in
this direction were obtained by Morrey [29], Ahlfors and Bers [9], and also by Bers
and Nirenberg [12]. We also refer to [8] by Ahlfors. We now summarize a few results
from [9] about the Beltrami equation for measurable µ which we will need later on.
The first result concerns the inhomogeneous Beltrami equation

∂u = µ∂ u + σ,

where u : C → C, µ is a complex-valued measurable function on C with

‖µ‖L∞(C) < 1

and σ ∈ Lp(C) for a suitable p > 2 (we explain shortly what values for p are
admissible). We consider the following operators acting on smooth functions with
compact support in the plane:

(Ag)(z) := 1

2πi

∫
C

g(ξ )
( 1

ξ − z
− 1

ξ

)
dξ dξ,

(�g)(z) := 1

2πi
lim
ε↘0

∫
C\Bε(0)

g(ξ ) − g(z)

(ξ − z)2
dξ dξ .

Both operators can be extended to continuous operators Lp(C) → Lp(C) for all
2 < p < ∞. They have the following properties:
(1) ∂(Ag) = A(∂g) = g;
(2) ∂(Ag) = A(∂g) = �g;
(3) |Ag(z1) − Ag(z2)| ≤ Cp‖g‖Lp(C)|z2 − z1|1−2/p;
(4) ‖�g‖Lp(C) ≤ cp ‖g‖Lp(C) with cp → 1 as p → 2.
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We used here the notation ∂ = (1/2)(∂s + i∂t ) and ∂ = (1/2)(∂s − i∂t ). Properties
(1) and (2) above should be understood in the sense of distributions. The proof of (4)
involves the Calderón-Zygmund inequality and the Riesz-Thorin convexity theorem
(see [25] and [32]). Following [9], we define Bp with p > 2 to be the space of all
locally integrable functions on the plane which have weak derivatives inLp(C), vanish
in the origin, and which satisfy a global Hölder condition with exponent 1 − 2

p
. For

u ∈ Bp, we then define a norm by

‖u‖Bp
:= sup

z1 �=z2

|u(z2) − u(z1)|
|z2 − z1|1−(2/p)

+ ‖∂u‖Lp(C) + ‖∂u‖Lp(C)

so that Bp becomes a Banach space. We usually choose p > 2 such that
cp supτ ‖µτ‖L∞(C) < 1, where cp is the constant from item (4) above.

THEOREM 3.4 ([9, Theorem 1])
Assume that p > 2 such that cp supτ ‖µτ‖L∞(C) < 1. If σ ∈ Lp(C), then the equation

∂u = µ∂u + σ

has a unique solution u = uµ,σ ∈ Bp.

For the existence part of the theorem, one first solves the following fixed-point problem
in Lp(C):

q = �(µq) + �σ.

This is possible because the map

Lp(C) −→ Lp(C)

q �−→ �(µq + σ )

is a contraction in view of cp‖µ‖L∞(C) < 1. Then

u := A(µq + σ )

is the desired solution. The following estimate is also derived in [9]:

‖q‖Lp(C) ≤ c′
p‖σ‖Lp(C) (3.4)

with c′
p = cp/(1 − cp‖µ‖L∞(C)), which follows from

‖q‖Lp(C) ≤ ‖�(µq)‖Lp(C) + ‖�σ‖Lp(C)

≤ cp‖µ‖L∞(C)‖q‖Lp(C) + cp‖σ‖Lp(C).
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Recalling our original situation, we have the following result which shows that
there is some sort of conformal mapping for j1 on the ball B.

THEOREM 3.5 ([9, Theorem 4])
Let µ : C → C be an essentially bounded measurable function with µ|C\B ≡ 0 and
p > 2 such that cp‖µ‖L∞(C) < 1. Then there is a unique map α : C → C with
α(0) = 0 such that

∂α = µ∂α

in the sense of distributions with ∂α − 1 ∈ Lp(C).

The desired map α is given by

α(z) = z + u(z),

where u ∈ Bp solves the equation ∂u = µ∂u + µ. In particular, α ∈ W 1,p(B).
Lemma 8 in [9] states that α : C → C is a homeomorphism. We can apply the
theorem to all the µτ , 0 < τ ≤ 1 and obtain smooth µτ -conformal mappings ατ

together with the associated maps uτ .

LEMMA 3.6
Let µn : C → C be a sequence of measurable functions so that µn|C\B ≡ 0 and
supn ‖µn‖L∞(C) < 1. Assume that µn → µ pointwise almost everywhere. Then the
corresponding quasi-conformal mappings αn, α as in Theorem 3.5 satisfy

‖αn − α‖W 1,p(B) −→ 0

as n → ∞ for any p > 2 such that cp supn ‖µn‖L∞(C) < 1 and any compact set
B ⊂ C.

Proof
We first estimate with g ∈ Lp(C) and z �= 0

|Ag(z)| = 1

2π

∣∣∣ ∫
C

g(ξ )
z

ξ (ξ − z)

∣∣∣ dξ dξ̄
≤ |z|

2π
‖g‖Lp(C)

∥∥∥ 1

ξ (ξ − z)

∥∥∥
L

p
p−1 (C)

(3.5)

≤ Cp‖g‖Lp(C) |z|1− 2
p ,
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where the last estimate holds in view of∫
C

|ξ (ξ − z)|−p/(p−1) dξ dξ̄
ζ=z−1ξ=

∫
C

|z2ζ 2 − z2ζ |−p/(p−1)|z|2 dζ dζ̄

= |z|2−2p/(p−1)

∫
C

|ζ (ζ − 1)|−p/(p−1)dζ dζ̄︸ ︷︷ ︸
2πCp

.

If q solves q = �(µq + µ), then

∂̄(αn − α) = µn ∂(αn − α) − µ∂α + µn ∂α

= µn ∂(αn − α) + µn − µ + (µn − µ)�(µq + µ),

that is, the difference αn − α again satisfies an inhomogeneous Beltrami equation. By
Theorem 3.4, we have

αn − α = A(µnqn + λn),

where λn = µn − µ + (µn − µ)�(µq + µ) and where qn ∈ Lp(C) solves qn =
�(µnqn + λn). Combining this with (3.5) and (3.4), we obtain

|αn(z) − α(z)| ≤ Cp ‖µnqn + λn‖Lp(C) |z|1−2/p

≤ (Cp sup
n

‖µn‖L∞(C) · c′
p‖λn‖Lp(C) + Cp ‖λn‖Lp(C)) |z|1−2/p. (3.6)

Since ‖µn − µ‖Lp(C) → 0 and ‖(µn − µ)�(µq + µ)‖Lp(C) → 0 by Lebesgue’s
theorem we also have ‖λn‖Lp(C) → 0 and therefore αn → α uniformly on compact
sets. Since ∂̄(αn − α) = µn ∂(αn − α) + λn and αn − α = A(µnqn + λn), we verify
that

∂(αn − α) = �(µnqn + λn) = qn

and

∂̄(αn − α) = µnqn + λn.

Invoking (3.4) once again, we see that both ‖∂(αn − α)‖Lp(C) and ‖∂̄(αn − α)‖Lp(C)

can be bounded from above by a constant times ‖λn‖Lp(C) which converges to
zero. �

We also need some facts concerning the classical case where µ ∈ Ck,α(BR(0)),
BR(0) = {z ∈ C | |z| < R} which are not spelled out explicitly in either [11] or [13],
but which easily follow from the constructions carried out there.
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THEOREM 3.7
Let µ, γ, δ ∈ Ck,α(BR′(0)) with 0 < α < 1 and supBR′ (0) |µ| < 1. Then for sufficiently
small 0 < R ≤ R′, there is a unique solution w ∈ Ck+1,α(BR(0)) to the equation

∂w(z) = µ(z)∂w(z) + γ (z)w(z) + δ(z)

with w(0) = 0 and ∂w(0) = 1. If w1, w2 solve the above equation with coefficient
functions µl, γl, δl , l = 1, 2, then there is a constant c = c(α,R, ‖w2‖Ck,α (BR(0)), k) >
0 such that, for all w1 ∈ Ck+1,α(BR(0)), we have

‖w2 − w1‖Ck+1,α(BR(0)) ≤ c (‖δ2 − δ1‖Ck,α(BR (0))

+ ‖µ2 − µ1‖Ck,α (BR(0)) + ‖γ2 − γ1‖Ck,α(BR (0))).

Sketch of the proof
The existence proof is a slight generalization of the Korn-Lichtenstein result (see also
[11] or [13]). What we are looking for is the estimate. We define the following operator

(Tw)(z) := A(µ∂w + γw)(z) − z �(µ∂w + γw)(0)

and the function

g(z) := (Aδ)(z) − z (�δ)(0) + z.

A solution to the problem

w(z) = (Tw)(z) + g(z)

also solves the equation ∂w(z) = µ(z)∂w(z) + γ (z)w(z) + δ(z) with w(0) = 0 and
∂w(0) = 1. In [11, Lecture 4] it is shown that T defines a bounded linear operator

T : C1,α
(
BR(0)

) −→ C1,α
(
BR(0)

)
with

‖T ‖ ≤ const · Rα = θ, θ < 1 for small R > 0,

so that the series g + ∑∞
k=1 T

kg converges and the limit w satisfies w = Tw + g.
Another useful fact is the following. Assume that T1, T2 are operators as above with
coefficient functions µ1, γ1 and µ2, γ2, respectively. Then

‖T2 − T1‖ ≤ c (‖µ2 − µ1‖C0,α(BR (0)) + ‖γ2 − γ1‖C0,α (BR(0)))
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for a suitable constant c > 0 depending on α and R. This is only implicitly proved in
[11], so we sketch the proof of this inequality. We have

(T2 − T1)h(z) = A
(
(µ2 − µ1)∂h + (γ2 − γ1)h

)
(z)

− z �
(
(µ2 − µ1)∂h + (γ2 − γ1)h

)
(0),

∂
(
(T2 − T1)h

)
(z) = �

(
(µ2 − µ1)∂h + (γ2 − γ1)h

)
(z)

−�
(
(µ2 − µ1)∂h + (γ2 − γ1)h

)
(0),

and

∂̄
(
(T2 − T1)h

)
(z) = (µ2 − µ1)(z)∂h(z) + (γ2 − γ1)(z)h(z).

We need [13, (21)–(24)]. Adapted to our notation, they look as follows with z, z1, z2 ∈
BR(0):

|(Ah)(z)| ≤ 4R‖h‖C0(BR (0))

|(�h)(z)| ≤ 2α+1

α
Rα‖h‖C0,α (BR(0))

|(Ah)(z2) − (Ah)(z1)|
|z2 − z1|α ≤ 2‖h‖C0(BR (0)) + 2α+2

α
Rα‖h‖C0,α (BR(0))

|(�h)(z2) − (�h)(z1)|
|z2 − z1|α ≤ Cα ‖h‖C0,α (BR(0)).

Recalling that

‖h‖C1,α (BR(0)) := ‖h‖C0(BR(0)) + ‖∂h‖C0,α (BR(0)) + ‖∂̄h‖C0,α (BR(0))

and

‖k‖C0,α (BR(0)) := ‖k‖C0(BR (0)) + sup
z1 �=z2

|k(z2) − k(z1)|
|z2 − z1|α

and that the Hölder norm satisfies

‖hk‖C0,α (BR(0)) ≤ C ‖h‖C0,α (BR (0)) ‖k‖C0,α (BR (0))

for a suitable constant C depending only on α and R, the asserted inequality for the
operator norm of T2 − T1 follows. In the same way, we obtain

‖g2 − g1‖C1,α(BR (0)) ≤ c ‖δ2 − δ1‖C0,α(BR (0)).
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Since

‖w2 − w1‖C1,α(BR (0)) ≤ ‖(T2 − T1)w2‖C1,α (BR(0))

+ θ ‖w2 − w1‖C1,α (BR(0)) + ‖g2 − g1‖C1,α (BR(0))

and since θ < 1, we obtain the assertion of the theorem for k = 1. Because derivatives
of w again satisfy an equation of the form ∂w(z) = µ(z)∂w(z) + γ (z)w(z) + δ(z),
we can proceed by iteration. This is carried out in [11, Lecture 5]. �

3.2. A uniform L2-bound for the harmonic forms and uniform convergence

PROPOSITION 3.8
Let (S, j0, �, ũ0, γ0) be a solution of (1.1) defined on Ṡ which is everywhere transverse
to the Reeb vector field. Assume that (S, jf , �, ũ = (a, u), γ ) is another smooth
solution, where u is given by

u(z) = φf (z)

(
u0(z)

)
for a suitable smooth bounded function f : S → R. Then we have

‖γ ‖L2,jf ≤ ‖u∗
0λ‖L2,jf , (3.7)

where

‖σ‖L2,jf :=
( ∫

Ṡ

σ ◦ jf ∧ σ
)1/2

(with σ a 1-form on Ṡ).

Proof
Using the differential equation u∗λ ◦ jf = da + γ and u∗λ = u∗

0λ+ df , we compute∫
Ṡ

u∗λ ∧ γ =
∫
Ṡ

u∗
0λ ∧ γ +

∫
Ṡ

d(f γ )

=
∫
Ṡ

u∗
0λ ∧ γ

and ∫
Ṡ

u∗λ ∧ γ =
∫
Ṡ

da ∧ γ ◦ jf − ‖γ ‖2
L2,jf

= −‖γ ‖2
L2,jf

.
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The integral
∫
S
d(f γ ) vanishes by Stokes’s theorem since f γ is a smooth 1-form on

the closed surface S. The form da∧γ ◦jf is not smooth on S, but the integral vanishes
anyway for the following reason. As we have proved in the appendix, the form γ ◦ jf

is bounded near the punctures, and hence in local coordinates near a puncture it is of
the form

σ = F (w1, w2)dw1 + F2(w1, w2)dw2, w1 + iw2 ∈ C,

where F1, F2 are smooth (except possibly at the origin) but bounded. Passing to polar
coordinates via

φ : [0,∞) × S1 −→ C\{0}
φ(s, t) = e−(s+it) = w1 + iw2,

we see that φ∗σ has to decay at the rate e−s for large s. The form da has γ1(r(s)) ds
as its leading term. Computing the integral

∫
�
a(γ ◦ jf ) over small loops � around

the punctures and using Stokes’s theorem, we conclude that the contribution from
neighborhoods of the punctures can be made arbitrarily small. Therefore, the integral∫
Ṡ
da ∧ γ ◦ jf must vanish.

If � is a volume form on S, then we may write u∗
0λ ∧ γ = g · � for a suitable

smooth function g. Defining ∫
Ṡ

|u∗
0λ ∧ γ | :=

∫
Ṡ

|g|�,

we have

‖γ ‖2
L2,jf

=
∣∣∣ ∫

Ṡ

u∗
0λ ∧ γ

∣∣∣
≤

∫
Ṡ

|u∗
0λ ∧ γ |

≤ ‖u∗
0λ‖L2,jf ‖γ ‖L2,jf ,

which implies the assertion. �

We resume the proof of the compactness result, Theorem 3.2. All the considerations
which follow are local. The task is to improve the regularity of the limit fτ0 and the
nature of the convergence fτ → fτ0 . Because the proof is somewhat lengthy, we
organize it in several steps. For τ < τ0, let now

ατ : B −→ Uτ ⊂ C
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be the conformal transformations as in Section 2, that is,

T ατ (z) ◦ i = jτ (ατ (z)) ◦ T ατ (z), z ∈ B.

The L∞-bound (3.1) on the family of functions (fτ ) and the above L2-bound imply
convergence of the harmonic forms α∗

τ γτ after maybe passing to a subsequence.

PROPOSITION 3.9
Let τ ′

k be a sequence converging to τ0, and let B ′ = Bε′(0) with B ′ ⊂ B. Then there is
a subsequence (τk) ⊂ (τ ′

k) such that the harmonic 1-forms α∗
τk
γτk converge in C∞(B ′).

Proof
First, the harmonic 1-forms α∗

τ γτ satisfy the same L2-bound as in Proposition 3.8:

‖α∗
τ γτ‖2

L2(B) =
∫
B

α∗
τ γτ ◦ i ∧ α∗

τ γτ

=
∫
B

α∗
τ (γτ ◦ jτ ) ∧ α∗

τ γτ

=
∫
Uτ

γτ ◦ jτ ∧ γτ

≤ ‖u∗
0λ‖L2,jτ

≤ C,

where C is a constant depending only on λ and u0 since

sup
τ

‖jτ‖L∞(Ṡ) < ∞.

We write

α∗
τ γτ = h1

τ ds + h2
τ dt,

where hk
τ , k = 1, 2 are harmonic and bounded in L2(B) independent of τ . If y ∈ B

and BR(y) ⊂ BR(y) ⊂ B, then the classical mean-value theorem

hk
τ (y) = 1

πR2

∫
BR (y)

hk
τ (x)dx

implies that, for any ball Bδ = Bδ(y) with Bδ ⊂ Bδ ⊂ B, we have the rather generous
estimate

‖hk
τ‖C0(Bδ(y)) ≤ 1√

π δ
‖hk

τ‖L2(B) ≤
√
C√
π δ

.
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With y ∈ B and with ν = (ν1, ν2) being the unit outer normal to ∂Bδ(y), we get

∂sh
k
τ (y) = 1

πδ2

∫
Bδ(y)

∂sh
k
τ (x)dx

= 1

πδ2

∫
Bδ(y)

div(hk
τ , 0) dx

= 1

πδ2

∫
∂Bδ(y)

hk
τ ν1 ds

and

|∇hk
τ (y)| = 1

πδ2

∣∣∣ ∫
∂Bδ (y)

hk
τ ν ds

∣∣∣
≤ 2

δ
‖hk

τ‖C0(Bδ(y))

so that, for B ′ = Bε′ , r being the radius of B, and δ = r − ε′, we have

‖∇hk
τ‖C0(B ′) ≤ 2

√
C√

π δ2
.

By iterating this procedure on nested balls we obtain τ -uniform C0(B ′)-bounds on all
derivatives. Convergence as stated in the proposition then follows from the Ascoli-
Arzela theorem. �

3.3. A uniform Lp-bound for the gradient
The first step of the regularity story is showing that the gradients of aτ + ifτ are
uniformly bounded in Lp(B ′) for some p > 2 and for any ball B ′ with B ′ ⊂ B. It will
soon become apparent why this gradient bound is necessary. Since we do not have a
lot to start with, the proof will be indirect. Recall the differential equation (2.9)

∂̄jτ (aτ + ifτ ) = u∗
0λ ◦ jτ − i(u∗

0λ) − γτ − i(γτ ◦ jτ ),

where

jτ (z) = (
πλT u0(z)

)−1(
T φfτ (z)(u0(z))

)−1

×J
(
φfτ (z)(u0(z))

)
T φfτ (z)

(
u0(z)

)
πλT u0(z).

We set

φτ (z) := aτ (z) + i fτ (z), z ∈ Uτ
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so that, for z ∈ B, we have

∂(φτ ◦ ατ )(z) = ∂jτ φτ

(
ατ (z)

) ◦ ∂sατ (z)

= (
u∗

0λ ◦ jτ − i(u∗
0λ)

)
ατ (z)

◦ ∂sατ (z)

−
(

(α∗
τ γτ )(z) · ∂

∂s
+ i(α∗

τ γτ )(z) · ∂

∂t

)
(3.8)

=: F̂τ (z) + Ĝτ (z)

=: Ĥτ (z),

and

sup
τ

‖F̂τ‖Lp(B) < ∞ for some p > 2 (3.9)

since ατ → ατ0 in W 1,p(B) and supτ ‖jτ‖L∞ < ∞. We also have

sup
τ

‖Ĝτ‖Ck (B ′) < ∞ (3.10)

for any ball B ′ ⊂ B ′ ⊂ B and any integer k ≥ 0 in view of Proposition 3.9 (the
proposition asserts uniform convergence after passing to a suitable subsequence, but
uniform bounds on all derivatives are established in the proof). We claim now that,
for every ball B ′ ⊂ B ′ ⊂ B, there is a constant CB ′ > 0 such that

‖∇(φτ ◦ ατ )‖Lp(B ′) ≤ CB ′, ∀ τ ∈ [0, τ0). (3.11)

Arguing indirectly, we may assume that there is a sequence τk ↗ τ0 such that

‖∇(φτk ◦ ατk )‖Lp(B ′) → ∞ for some ball B ′ ⊂ B ′ ⊂ B. (3.12)

Now define

εk := inf
{
ε > 0

∣∣ ∃ x ∈ B ′ : ‖∇(φτk ◦ ατk )‖Lp(Bε(x)) ≥ ε2/p−1
}
,

which are positive numbers since ε(2/p)−1 → +∞. Because we assumed (3.12) we
must have infk εk = 0, hence we will assume that εk → 0. Otherwise, if ε0 =
(1/2) infk εk > 0, then we cover B ′ with finitely many balls of radius ε0, and we
would get a k-uniform Lp-bound on each of them, contradicting (3.12). We claim that

‖∇(φτk ◦ ατk )‖Lp(Bεk
(x)) ≤ ε

(2/p)−1
k , ∀ x ∈ B ′. (3.13)

Otherwise, we could find y ∈ B ′ so that

‖∇(φτk ◦ ατk )‖Lp(Bεk
(y)) > ε

(2/p)−1
k ,
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and we would still have the same inequality for a slightly smaller ε′
k < εk , contradicting

the definition of εk . We now claim that there is a point xk ∈ B ′ with

‖∇(φτk ◦ ατk )‖Lp(Bεk
(xk )) = ε

(2/p)−1
k . (3.14)

Indeed, pick sequences δl ↘ εk and yl ∈ B ′ so that

‖∇(φτk ◦ ατk )‖Lp(Bδl
(yl )) ≥ δ

(2/p)−1
l .

We may assume that the sequence (yl) converges. Denoting its limit by xk , we obtain

‖∇(φτk ◦ ατk )‖Lp(Bεk
(xk )) ≥ ε

(2/p)−1
k ,

and (3.14) follows from (3.13). Hence there is a sequence (xk) ⊂ B ′ for which (3.14)
holds. We may assume that the sequence (xk) ⊂ B ′ converges and (without loss of
generality) also that limk→∞ xk = 0. Let R > 0, and we define for z ∈ BR(0) the
functions

ξk(z) := (φτk ◦ ατk )
(
xk + εk(z − xk)

)
,

which makes sense if k is sufficiently large. The transformation

� : x �−→ xk + εk(x − xk)

satisfies �(B1(xk)) = Bεk (xk) and �(B1(y)) ⊂ Bεk (xk + εk(y − xk)) so that∫
Bεk

(xk )
|∇(φτk ◦ ατk )(x)|pdx = ε2

k

∫
B1(xk )

|∇(φτk ◦ ατk )
(
xk + εk(z − xk)

)|pdz
= ε2

k

∫
B1(xk )

ε
−p

k |∇ξk(z)|pdz

and

‖∇ξk‖Lp(B1(xk )) = ε
1−(2/p)
k ‖∇(φτk ◦ ατk )‖Lp(Bεk

(xk)) (3.15)

= 1

by (3.14) and, for any y for which ξk|B1(y) is defined and for large enough k, we have

‖∇ξk‖Lp(B1(y)) ≤ ε
1−(2/p)
k ‖∇(φτk ◦ ατk )‖Lp(Bεk

(xk+εk (y−xk ))) ≤ 1 (3.16)

by (3.13). The functions ξk satisfy the equation

∂̄ξk(z) = εkF̂τk

(
xk + εk(z − xk)

) + εkĜτk

(
xk + εk(z − xk)

) =: Hτk (z) (3.17)
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and, for every R > 0, we have

sup
k

‖∇ξk‖Lp(BR (0)) < ∞, ‖∇ξk‖Lp(B2(0)) ≥ 1 (3.18)

because of (3.16) and (3.15) since B1(xk) ⊂ B2(0) for large k. The upper bound
on ‖∇ξk‖Lp(BR(0)) depends on how many balls B1(y) are needed to cover BR(0). We
compute for ρ > 0

‖Hτk‖Lp(Bρ (xk )) = ε
1−(2/p)
k ‖Ĥτk‖Lp(Bρεk

(xk )),

with Ĥτk as in (3.8). We conclude from p > 2, (3.9), and (3.10) that

‖Hτk‖Lp(BR (0)) −→ 0

for any R > 0 as k → ∞. Defining

Xl,p := {ψ ∈ Wl,p(B,C2) |ψ(0) = 0, ψ(∂B) ⊂ R2}, l ≥ 1, B ⊂ C a ball,

the Cauchy-Riemann operator

∂̄ : Xl,p −→ Wl−1,p(B,C2)

is a bounded bijective linear map. By the open mapping principle, we have the fol-
lowing estimate:

‖ψ‖l,p,B ≤ C ‖∂ψ‖l−1,p,B, ∀ ψ ∈ Xl,p. (3.19)

Let R′ ∈ (0, R). Now pick a smooth function β : R2 → [0, 1] with β|BR′ (0) ≡ 1 and
supp(β) ⊂ BR(0). Define

ζk(z) := Re
(
ξk(z) − ξk(0)

) + iβ(z) Im
(
ξk(z) − ξk(0)

)
.

We note that

sup
k

‖ Im(ξk)‖Lp(BR(0)) ≤ CR

with a suitable constant CR > 0 because of the uniform bound

sup
k,R

‖ Im(ξk)‖L∞(BR (0)) < ∞.
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Using (3.19), we then obtain

‖ξk − ξk(0)‖1,p,BR′ (0) ≤ ‖ζk‖1,p,BR (0)

≤ C ‖∂ζk‖Lp(BR (0))

≤ CR′(‖Hτk‖Lp(BR(0)) + ‖∇ξk‖Lp(BR (0)) (3.20)

+ ‖ Im(ξk) − Im(ξk)(0)‖Lp(BR (0)))

because of

∂ζk = Hτk + i(β − 1)∂
(

Im(ξk)
) + i ∂β

(
Im(ξk) − Im(ξk)(0)

)
.

Hence the sequence (ξk − ξk(0)) is uniformly bounded in W 1,p(BR′(0)), and in par-
ticular, it has a subsequence which converges in Cα(BR′(0)) for 0 < α < 1 − 2

p
and

also in Lp(BR′(0)). For R′′ ∈ (0, R′), we now use the regularity estimate

‖ξl − ξk − (ξl − ξk)(0)‖1,p,BR′′ (0) ≤ c ‖Hτl − Hτk‖Lp(BR′ (0))

+ c ‖ξl − ξk − (ξl − ξk)(0)‖Lp(BR′ (0)), (3.21)

where c = c(p,R′, R′′) > 0. This follows from (3.19) applied to ψ = β(ξl − ξk −
(ξl − ξk)(0)), where β is a smooth cutoff function with support in BR′ and where
β ≡ 1 on BR′′ . We may then assume that the right-hand side of (3.21) converges to
zero as k, l → ∞. This argument can be carried out for any triple 0 < R′′ < R′ < R.
Hence the sequence ξk − ξk(0) converges in W

1,p
loc (C) to some limit ξ : C → C which

solves ∂̄ξ = 0 in the sense of distributions. Therefore, it is an entire holomorphic
function. Because the imaginary parts of ξk are uniformly bounded, this also applies
to Im(ξ ). Liouville’s theorem for harmonic functions then implies that Im(ξ ) must be
constant, hence ξ is constant as well. On the other hand, ξ cannot be constant since it
satisfies ‖∇ξ‖Lp(B2(0)) ≥ 1. This contradiction finally disproves our assertion (3.12).
We summarize with the following.

PROPOSITION 3.10
For every ball B ′ with B ′ ⊂ B we have

sup
τ

‖∇(φτ ◦ ατ )‖Lp(B ′) < ∞.

Remark 3.11
After establishing the estimates (3.18) for ∇ξk , we could have derived a k uniform
W 1,p-bound for ξk minus its average ξk over the ball BR(0) via Poincaré’s inequality.
We could have derived W 1,p(BR(0)) convergence of ξk − ξk , but not convergence in
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W
1,p
loc (C) since the sequence (ξk − ξk) depends on the choice of the ball BR(0). Our

sequence ξk − ξk(0) has a convergent subsequence on any ball.

3.4. Convergence in W 1,p(B ′)
Pick a sequence τk ↗ τ0. We claim that the sequence (F̂τk ) converges in Lp(B) maybe
after passing to a suitable subsequence (recall that, so far, we only have the uniform
bound (3.9)). The functions F̂τk converge pointwise almost everywhere after passing
to some subsequence. Indeed, the sequence {(u∗

0λ ◦ jτk − i(u∗
0λ))ατk

(z)} converges
already pointwise since jτk and ατk do (recall that the sequence (ατk ) converges in
W 1,p(B) and therefore uniformly). The sequence (∂sατk ) converges in Lp(B) and
therefore pointwise almost everywhere after passing to a suitable subsequence. Then
by Egorov’s theorem, for any δ > 0, there is a subset Eδ ⊂ B with |B\Eδ| ≤ δ so that
the sequence F̂τk converges uniformly on Eδ . Let α be the Lp-limit of the sequence
(∂sατk ), and let ε > 0. We introduce

C := 2 sup
0≤τ<τ0

∥∥(u∗
0λ ◦ jτ − i(u∗

0λ))ατ (z)

∥∥
L∞(B)

.

Now pick δ > 0 sufficiently small such that

‖α‖Lp(B\Eδ) ≤ ε

3C
.

Now choose k0 ≥ 0 so large that, for all k ≥ k0, we have

‖∂sατk − α‖Lp(B) ≤ ε

3C
and ‖F̂τk − F̂τl‖L∞(Eδ) ≤ ε

3 |B| .

Then, if k, l ≥ k0, we have

‖F̂τk − F̂τl‖Lp(B) ≤ ‖F̂τk − F̂τl‖Lp(Eδ) + ‖F̂τk − F̂τl‖Lp(B\Eδ)

≤ |Eδ| ‖F̂τk − F̂τl‖L∞(Eδ) + 2 sup
k≥k0

‖F̂τk‖Lp(B\Eδ)

≤ |B| ‖F̂τk − F̂τl‖p

L∞(Eδ ) + C · sup
k≥k0

‖∂sατk‖Lp(B\Eδ)

≤ ε

proving the claim.

Recalling that φτ = aτ + ifτ and that the family fτ satisfies a uniform L∞-bound, we
have

sup
τ

‖ Im(φτ ◦ ατ )‖L∞(B) < ∞.
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Now pick three balls B ′′′ ⊂ B ′′ ⊂ B ′ ⊂ B such that the closure of one is contained
in the next. Our aim is to establish W 1,p(B ′′′)-convergence of a subsequence of the
sequence (φτk ◦ ατk ). By Proposition 3.10, we have a uniform Lp(B ′)-bound on the
gradient. If β : R2 → [0, 1] is a smooth function with supp (β) ⊂ B ′ and β|B ′′ ≡ 1
and if

ζτ = Re
(
φτ ◦ ατ − φτ (0)

) + iβ Im
(
φτ ◦ ατ − φτ (0)

)
,

then we proceed in the same way as in (3.20), and we obtain

‖ϕk‖1,p,B ′′ ≤ C (‖Ĥτk‖Lp(B ′) + ‖∇(φτk ◦ ατk )‖Lp(B ′) + ‖ Im(ϕk)‖Lp(B ′)),

where we wrote

ϕk := φτk ◦ ατk − (φτk ◦ ατk )(0),

and where C > 0 is a constant depending only on p,B ′, and B ′′. The sequence (ϕk) is
then uniformly bounded in W 1,p(B ′′) by Proposition 3.10, and it converges in Lp(B ′′)
after passing to a suitable subsequence. We now use the regularity estimate

‖ϕl − ϕk‖1,p,B ′′′ ≤ C (‖F̂τl − F̂τk‖Lp(B ′′) (3.22)

+ ‖Ĝτl − Ĝτk‖Lp(B ′′) + ‖ϕl − ϕk‖Lp(B ′′)).

Since the right-hand side converges to zero as k, l → ∞, we obtain the following.

PROPOSITION 3.12
For every ball B ′ ⊂ B ′ ⊂ B, the sequence (φτk ◦ ατk − φτk (0)) has a subsequence
which converges in W 1,p(B ′).

3.5. Improving regularity using both the Beltrami and Cauchy-Riemann equations
In order to improve the convergence of the conformal transformations ατk , we need
to improve the convergence of the maps µτk → µτ0 and the regularity of its limit.
It is known that the inverses α−1

τk
of the conformal transformations ατk also satisfy a

Beltrami equation (see [9])

∂α−1
τ = ντ ∂α

−1
τ ,

where

ντ (z) = −∂ατ (α−1
τ (z))

∂ατ (α−1
τ (z))

µτ

(
α−1
τ (z)

)
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(follows from 0 = ∂(α−1
τ ◦ ατ ) = ∂α−1

τ (ατ )∂ατ + ∂α−1
τ (ατ )∂ατ ). After passing to a

suitable subsequence, we may assume that ∂ατk and ∂ατk converge pointwise almost
everywhere since they converge in Lp(B). Hence we may assume that the sequence
(ντk ) also converges pointwise almost everywhere. We also have

|ντ (z)| ≤ ∣∣µτ

(
α−1(z)

)∣∣,
and hence ντ satisfies the same L∞-bound as µτ . By Lemma 3.6, we conclude that

α−1
τk

−→ α−1
1 in W 1,p(B)

with the same p > 2 as in Lemma 3.6 applied to the functions µτ . After passing to
some subsequence, the sequence

(ϕk) := (
φτk − aτk (0)

) ◦ ατk

converges inW 1,p(B ′) for any ballB ′ ⊂ B by Proposition 3.12. Indeed, the expression
φτk ◦ ατk − φτk (0) and ϕk differ by a constant term ifτk (0), but the sequence (ifτk (0))
has a convergent subsequence.

We would like to derive a decent notion of convergence for the sequence (ϕτk◦α−1
τk

),
but the space W 1,p is not well behaved under compositions. The composition of two
functions of class W 1,p is only in W 1,p/2. Since we cannot choose p > 2 freely, we
rather carry out the argument in Hölder spaces. By the Sobolev embedding theorem
and Rellich compactness, we may assume that the sequences (ϕk) and (α−1

τk
) converge

in C0,α(B ′) for any ball B ′ ⊂ B ′ ⊂ B and 0 < α ≤ 1 − (2/p). We conclude from
the inequality

‖f ◦ g‖C0,γ δ(B ′) ≤ ‖f ‖C0,γ (B ′)‖g‖C0,δ (B ′), ∀ f ∈ C0,γ (B ′), g ∈ C0,δ(B ′),

where 0 < γ, δ ≤ 1, that the sequence (φτk − aτk (0)) converges in C0,α2
(B ′). In

particular, any sequence (fτk ), τk ↗ τ0 now converges in the C0,α2
-norm to fτ0 .

Hölder spaces are well behaved with respect to multiplication, that is,

‖fg‖C0,γ (B ′) ≤ 2 ‖f ‖C0,γ (B ′)‖g‖C0,γ (B ′),

and composition with a fixed smooth function maps C0,γ (B ′) into itself. It then
follows from the definition of the complex structure jτ and from the definition of
µτ that µτk → µτ0 in the C0,α2

-norm as well. We conclude from Theorem 3.7, the
classical regularity result for the Beltrami equation, that ατk → ατ0 in the C1,α2

-norm.
The regularity estimate for the Cauchy-Riemann operator (3.22) is also valid in Hölder
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spaces, that is,

‖ϕl − ϕk‖Ck+1,γ (B ′′′) ≤ C (‖F̂τl − F̂τk‖Ck,γ (B ′′)

+ ‖Ĝτl − Ĝτk‖Ck,γ (B ′′) + ‖ϕl − ϕk‖Ck,γ (B ′′)).

The sequence (F̂τk ) now converges in theC0,α2
-norm, and the sequence (Ĝτk ) converges

in any Hölder norm. We obtain with the above regularity estimateC1,α2
-convergence of

the sequence (ϕk), and composing withα−1
τk

yieldsC1,α4
-convergence of (fτk ) and (µτl ).

Invoking Theorem 3.7 again then improves the convergence of the transformations
ατk , α

−1
τk

to C2,α4
. We now iterate the procedure using the regularity estimate for the

Cauchy-Riemann operator in Hölder space and the estimate for the Beltrami equation
in Theorem 3.7.

Theorem 3.2 follows if we apply the implicit function theorem to the limit solution
(S, jτ0, ũτ0 = (aτ0, uτ0 ), γτ0 ), hence we obtain the same limit for every sequence {τk},
and we obtain convergence in C∞.

4. Conclusion
The following remarks tie together the loose ends and prove the main result, Theorem
1.6. We start with a closed 3-dimensional manifold with contact form λ′. Giroux’s
theorem, Theorem 1.4, then permits us to change the contact form λ′ to another
contact form λ such that ker λ = ker λ′ and such that there is a supporting open book
decomposition with binding K consisting of periodic orbits of the Reeb vector field
of λ. Invoking Proposition 2.4, we construct a family of 1-forms (λδ)0≤δ<1 which
are contact forms except λ0, and the above open book supports ker λδ as well if
δ �= 0. By the uniqueness part of Giroux’s theorem, (M, ker λ) and (M, ker λδ) are
diffeomorphic for δ �= 0, hence we may assume without loss of generality that λ = λδ .
Proposition 2.6 then permits us to turn the Giroux leaves into holomorphic curves for
data associated with the confoliation form λ0. Picking one Giroux leaf, the implicit
function theorem, Theorem 2.8, then allows us to deform it into solutions to our PDE
(1.1) for small δ �= 0. Leaving such a parameter δ fixed from now, and denoting
the corresponding solution by (ũ0, γ0, j0), Theorem 2.8 then delivers more solutions
(ũτ , γτ , jτ )0≤τ<τ0 . The leaves uτ (Ṡ) are all global surfaces of section, recalling that
they are of the form uτ = φfτ (u0). Theorem 2.8 also implies that fτ < fτ ′ if τ < τ ′.
The compactness result, Theorem 3.2, then implies that there is a last solution for
τ = τ0 as well, and that either uτ0 (Ṡ) is disjoint from u0(Ṡ) or agrees with it. In the
latter case, the proof of Theorem 1.6 is complete. In the first case, we apply Theorem
2.8 again to (ũτ0, γτ0, jτ0 ), producing a larger family of solutions. Because τ �→ fτ (z)
is strictly monotone for each z ∈ S and because the return time for each point on u0(Ṡ)
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is finite, the images of uτ and u0 must agree for some sufficiently large τ , concluding
the proof. �

Appendix. Some local computations near the punctures
In this appendix, we present some local computations needed for the proof of Theorem
2.8. The issue is to show that the 1-forms

u∗
0λ ◦ jf − da0 and u∗

0λ + da0 ◦ jf

are bounded on Ṡ. We obtain in the second case of the theorem

u∗
0λ ◦ jf − da0 = u∗

0λ ◦ (jf − jg) + γ0

= dg ◦ (jf − jg) + γ0 + v∗
0λ ◦ (jf − jg).

The first case can be treated as a special case: here the objective is to show that the
1-form v∗

0λ◦ (jf − i) = v∗
0λ◦ (jf − j0) is bounded near the punctures. We again drop

the subscript δ in the notation since we are only concerned with a local analysis near
the binding, and all the forms λδ are identical there. We use coordinates (θ, r, φ) near
the binding. The contact structure is then generated by

η1 = ∂

∂r
= (0, 1, 0), η2 = −γ2

∂

∂θ
+ γ1

∂

∂φ
= (−γ2, 0, γ1).

The projection onto the contact planes along the Reeb vector field is then given by

πλ(v1, v2, v3) = 1

µ
(v1γ

′
1 + v3γ

′
2) η2 + v2 η1, with µ = γ1γ

′
2 − γ ′

1γ2,

and the flow of the Reeb vector field is given by

φt (θ, r, φ) = (
θ + α(r)t, r, φ + β(r)t

)
,

where

α(r) = γ ′
2(r)

µ(r)
and β(r) = −γ ′

1(r)

µ(r)
.

The linearization of the flow T φτ (θ, r, φ) preserves the contact structure. In the basis
{η1, η2} it is given by

T φτ (θ, r, φ) =
(

1 0
τA(r) 1

)
with A(r) = 1

µ2(r)

(
γ ′′

2 (r)γ ′
1(r) − γ ′′

1 (r)γ ′
2(r)

)
.
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The complex structure(s) we chose earlier in (2.7) had the following form near the
binding with respect to the basis {η1, η2}:

J (θ, r, φ) =
(

0 −rγ1(r)
1

rγ1(r) 0

)
.

The induced complex structure jτ on the surface is then given by

jτ (z) = [πλT v0(z)]−1[T φτ

(
v0(z)

)
]−1J

(
φτ (v0(z))

)
T φτ

(
v0(z)

)
πλT v0(z).

With v0(s, t) = (t, r(s), α), we find that

πλT v0(s, t) =
(
r ′(s) 0

0 γ ′
1(s)

µ(r(s))

)

so that

jτ =
(

−τA(r)rγ1(r) − rγ1(r)γ ′
1(r)

r ′µ(r)
r ′µ(r)

rγ1(r)γ ′
1(r) (1 + τ 2A2(r)r2γ 2

1 (r)) τA(r)rγ1(r)

)

=
( −τA(r)rγ1(r) −1

1 + τ 2A2(r)r2γ 2
1 (r) τA(r)rγ1(r)

)
= j0 + τ A(r) γ1(r)

( −1 0
τA(r)γ1(r) 1

)
and

jτ − jσ = A(r)rγ1(r)(τ − σ )

( −1 0
(τ + σ )A(r)rγ1(r) 1

)
,

using the fact that r(s) satisfies the differential equation

r ′(s) = γ ′
1(r(s))γ1(r(s))r(s)

µ(r(s))
.

With v∗
0λ = γ1(r) dt , we obtain

v∗
0λ ◦ (jτ − jσ )|(s,t) = (τ − σ )A

(
r(s)

)
r(s)γ 2

1

(
r(s)

)
·[(τ + σ )A

(
r(s)

)
r(s)γ1

(
r(s)

)
ds + dt

]
.
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Converting from coordinates (s, t) on the half-cylinder to Cartesian coordinates x +
iy = e−(s+it) in the complex plane, we get, with ρ = √

x2 + y2,

ds = − 1

ρ2
(x dx + y dy) and dt = − 1

ρ2
(x dy − y dx).

Recall that r(s) = c(s)eκs , where c(s) is a smooth function which converges to a
constant as s → +∞, and we assumed that κ ≤ −1/2 and that κ /∈ Z. Another
assumption was that A(r) = O(r). Hence r(s) is close to ρ−κ if s is large (and ρ is
small) and A(r(s)) = O(ρ−κ ). Also recall that γ1(r(s)) = O(1). Summarizing, we
need the expression

A
(
r(s)

)
r(s)ρ−2ρ = O(ρ−2κ−1)

to be bounded, which amounts to κ ≤ −1/2. The same argument applied to the form
dg ◦ (jτ − jσ ) leads to the same conclusion.
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1999, 381 – 475. MR 1725579 58

[22] ———, Finite energy foliations of tight three-spheres and Hamiltonian dynamics,
Ann. of Math. (2) 157 (2003), 125 – 255. MR 1954266 35

[23] H. HOFER and E. ZEHNDER, Symplectic Invariants and Hamiltonian Dynamics,
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