John E Froehlich

Fixed Term Research Assistant Professor, Department of Biochemistry & Molecular Biology
Fixed Term Assistant Professor, MSU-DOE Plant Research Laboratory
Location: S250 Plant Biology Lab
Phone: 5174324621
Profile photo of  John E Froehlich
Photo of: John E Froehlich

Bio

# Titles
* Research Assistant Professor

# Research: Biogenesis and Regulation of Thylakoid Membrane Complexes
## Characterization on ‘Ancillary’ Proteins Involved in Modulating Photosynthesis
By employing Dynamic Environmental Phenometrics Imagers (DEPI) (developed in the Kramer Lab), the Emerging Phenotype (EP) group has identified numerous genes with ‘ancillary’ functions that are conditionally essential for photosynthesis when plants are exposed to fluctuating environmental conditions. Currently, we are actively engaged in determining the function of many of these genes and their mechanism of action by applying a multi-step strategy that involves using an assortment of approaches such as:

1. Plant Phenometric Arrays
2. Various Computational Approaches
3. Numerous Biophysical and Biochemical Techniques.

Our long-term goal is to characterize ALL ‘ancillary’ proteins that are involved in the regulation and modulation of photosynthesis. Specifically, we propose to characterize unique ancillary proteins that are involved in either the transcriptional, photochemical or environmental regulation of photosynthesis under fluctuating light conditions.  

To this end, we have initially focused our efforts on ancillary proteins that are targeted to the thylakoids and thus may play a critical role in regulating photosynthesis under various environmental conditions. For instance, many of ‘ancillary’ proteins (APs) that have been identified by DEPI are predicted to be localized to the chloroplasts. As a consequence, we have used our well-established in vitro chloroplast import assay to confirm the targeting of these APs to the chloroplasts and have further determined their subcellular localization (i.e. stroma, thylakoid, envelope membrane) within chloroplasts. We have also investigated the topology of several unique APs that have been confirmed to be targeted to the thylakoid membrane. Finally, future lines of research will entail identifying additional proteins that interact with various APs and thus modulate these APs as they regulate the photosynthetic process under fluctuating environmental conditions. We anticipate that the information arising from our multifaceted approach will contribute to our understanding of how various APs affect individual photosynthetic complexes as well as how they regulate and control the overall photosynthetic process.

Preliminary results from Phenometric analysis have shown that many of these APs have functions important for photosynthesis efficiency and robustness. Consequently, these promising results raise many fundamental questions such as:

* How do these ancillary proteins control/modulate photosynthetic responses?
* What are their mechanistic bases?
* How are they critical for photosynthetic robustness and efficiency?

Ultimately, these questions need to be answered at the biochemical, biophysical and physiological levels.

## The Biogenesis and Assembly of Photosynthetic Complexes
Chloroplasts, unlike mitochondria or peroxisomes, contain an additional internal membrane system known as the thylakoid membrane. The thy­lakoid membranes are the location for the light reactions of photosyn­thesis. Indeed, photosynthesis is the defining event commonly associated with plant life: it converts light energy, captured by pigment-containing light-harvesting antennae, into chemical energy that ultimately sustains all life on our planet. The thylakoid membranes contain the four major photosynthetic com­plexes: photosystem I (PSI), photo­system II (PSII), the cytochrome b6f complex, and the ATP synthase complex. Together, these complexes constitute approximately 60 different integral membrane proteins of which nearly half are nuclear-encoded. 

Conse­quently, biogenesis of the photosyn­thetic apparatus requires the coordinated synthesis, targeting, and subsequent assembly of both nuclear- and chloroplastic-encoded proteins to form functional photosynthetic complexes. In addition, the maintenance of the photosynthetic apparatus requires the import of nuclear-encoded, thylakoidal proteins that are involved in the repair of PSII during periods of photoinhibition. Thus, a large number of proteins that play a critical role in either the biogenesis or maintenance of thylakoids must first cross the envelope membrane before being directed to either the thylakoid membrane or lumen. We are focusing on the specific question: How are integral thylakoid membrane proteins translocated across the envelope membrane unhindered as they travel to their final destination, the thylakoid membrane? 

# Links
* [Recent Publications](https://bmb.natsci.msu.edu/directory-pages/teaching-faculty/john-froehlich/recent-publications.aspx)
* [PubMed](https://pubmed.ncbi.nlm.nih.gov/?term=Froehlich+JE)

Selected Publications

  • Kanazawa A, Ostendorf E, Kohzuma K, Hoh D, Strand DD, Sato-Cruz M, Savage L, Cruz JA, Fisher N, Froehlich JE, Kramer DM. “Chloroplast ATP Synthase Modulation of the Thylakoid Proton Motive Force: Implications for Photosystem I and Photosystem II Photoprotection.” Front Plant Sci. (2017) May 3;8:719. View Publication
  • Kohzuma K, Froehlich JE, Davis GA, Temple JA, Minhas D, Dhingra A, Cruz JA, Kramer DM. “The Role of Light-Dark Regulation of the Chloroplast ATP Synthase.” Front Plant Sci. (2017) Jul 24;8:1248. View Publication
  • Lavell A, Froehlich JE, Baylis O, Rotondo A, Benning C. “A Predicted Plastid Rhomboid Protease Affects Phosphatidic Acid Metabolism in Arabidopsis thaliana.” Plant J. (2019) May 7. View Publication
  • Li J, Weraduwage SM, Peiser AL, Tietz S, Weise SE, Strand DD, Froehlich JE, Kramer DM, Hu J, Sharkey TD. “A Cytosolic Bypass and G6P Shunt in Plants Lacking Peroxisomal Hydroxypyruvate Reductase.” Plant Physiol. (2019) Mar 18;. View Publication
  • Schwarz EM, Tietz S, Froehlich JE. “Photosystem I-LHCII megacomplexes respond to high light and aging in plants.” Photosynth Res. (2018) Apr;136(1):107-124. View Publication
  • Wang K, Froehlich JE, Zienkiewicz A, Hersh HL, Benning C. “A Plastid Phosphatidylglycerol Lipase Contributes to the Export of Acyl Groups from Plastids for Seed Oil Biosynthesis.” Plant Cell. (2017) Jul 6. pii: tpc.00397.2017. View Publication
  • Wang K, Guo Q, Froehlich JE, Hersh HL, Zienkiewicz A, Howe GA, Benning C. “Two Abscisic Acid Responsive Plastid Lipase Genes Involved in Jasmonic Acid Biosynthesis in Arabidopsis thaliana.” Plant Cell. (2018) Apr 17. View Publication