Thomas D Sharkey

University Distinguished Professor, Department of Biochemistry & Molecular Biology
University Distinguished Professor, MSU-DOE Plant Research Laboratory
Regular Faculty, Molecular Plant Sciences Program
University Distinguished Professor, Plant Resilience Institute
University Distinguished Professor, BioMolecular Science Gateway
Pronouns: He/Him/His
Location: 210C Plant Biology Lab
Profile photo of  Thomas D Sharkey
Photo of: Thomas D Sharkey

Bio

# Titles
* University Distinguished Professor, MSU
* Emeritus Professor of Botany, University of Wisconsin-Madison

# Research: Plant-Atmosphere Gas Exchange
The Sharkey lab studies the biochemistry and biophysics that determine the exchange of gases between the biosphere and the atmosphere. Currently our research is concentrated on three projects – (1) carbon metabolism of photosynthesis – from carbon dioxide uptake to carbon export from the Calvin-Benson Cycle, (2) isoprene emission from plants, and (3) abiotic stress tolerance. In addition to modern techniques such as engineering of transgenic organisms, studies of mutants, and various -omics technologies, our specialty is the use of gas exchange measurements to connect the gas exchange behavior of leaves with an understanding of biochemical and molecular mechanisms that determine plant growth and resilience.

## Photosynthesis
Photosynthesis is the process by which energy from sunlight is captured and stored on carbon compounds. Carbon dioxide is taken up from the atmosphere, most often by diffusion. Changes in the carbon dioxide concentration in the atmosphere will have profound effects on photosynthesis (it already has). Carbon dioxide enters the Calvin-Benson cycle through the enzyme Rubisco. Carbon is processed in the Calvin-Benson cycle and then exported from the Calvin-Benson cycle to make starch, sucrose (table sugar) and many other end products.

We hypothesize that some of the carbon that leaves the Calvin-Benson cycle reenters the cycle through the glucose-6-phosphate shunt. As a result, carbon fixed by Rubisco is released in the oxidative branch of the pentose phosphate pathway. We hypothesize this improves resilience of the Calvin Benson cycle when light levels change rapidly (Sharkey & Weise 2016). We also hypothesize this explains the observation that the Calvin Benson cycle intermediates do not become 100% labeled when 13CO2 is fed to leaves.

Photosynthesis is the source of nearly all of the material used in plant growth but the photosynthetic rate per leaf area does not explain many differences in growth rates of plants. The amount of dry matter per area of a leaf is a much better predictor of plant growth rate. Leaf mass per area is a measure of the investment of resources for a given amount of whole plant photosynthesis and also affects the respiration cost of making new photosynthetic leaf area (Sharkey 2015; Weraduwage _et al._ 2015; Weraduwage _et al._ 2016).

By understanding the investments in photosynthesis and the relationship between plant growth parameters and photosynthetic rate, we hope to find ways to enhance plant growth and resilience, especially in light of a changing environment that could enhance photosynthetic rate because of increased CO2 but also reduce photosynthesis because of increased biotic and abiotic stress.

## Isoprene
Isoprene emission from plants is the largest hydrocarbon input into the atmosphere, exceeding all of the inputs from human activities. Isoprene emitted from plants affects atmospheric chemistry. In polluted atmospheres isoprene can make ozone pollution worse. Even in unpolluted atmospheres it can contribute to aerosols that make a blue haze often seen in mountainous areas (thus Blue Ridge Mountains in Southeastern US, the Blue Mountains in Australia).

Despite the vast quantity of isoprene emitted by some plants, especially trees like oaks, poplars, and eucalypts, we still do not know why plants emit isoprene. There is some protection against abiotic stress such as high temperature and ozone as a result of isoprene production in plants but sometimes the effect is small and the mechanism is unclear.

Recently, we provided evidence that cast doubt on the two leading hypotheses, that isoprene (1) was modifying membrane properties or (2) was quenching reactive oxygen (Harvey _et al._ 2015). But we also saw gene expression changes that were consistent with observations of colleagues using a different plant system (Behnke _et al._ 2010). We hope to determine how isoprene can affect gene expression and how those changes in gene expression can improve plant resilience.

Isoprene emission is strongly stimulated by high temperature but is inhibited by high CO2. As a result, isoprene emission in the future is hard to predict. The CO2-inhibition may be related to carbon export from the Calvin-Benson cycle (called triose-phosphate-use, TPU). If so, CO2-inhibition of isoprene emission should be strongly temperature-dependent because TPU is strongly temperature dependent. We are using our expertise in understanding TPU to understand CO2 inhibition of isoprene emission and expect to inform global models predicting how isoprene emission will change in the future (it is very likely to go up).

# Education
* Ph.D. 1980, Michigan State University
* B.S. 1974, Michigan State University

# Previous Appointments
* Department Chair, 2008-2017, Department of Biochemistry and Molecular Biology, MSU
* Professor Emeritus of Botany, 2008, University of Wisconsin, Madison
* Professor, 1991-2008, University of Wisconsin, Madison
* Assoc. Professor, 1988-91, University of Wisconsin, Madison
* Assist. Professor, 1987-88, University of Wisconsin, Madison
* Assist./Assoc. Research Professor, 1982-87, Desert Research Institute, Reno, NV
* Postdoctoral Fellow, 1980-82, Australian National University

# Awards
* 2022 - Anton Lang Honorary Lecture, MSU PRL award
* 2022 - American Society of Plant Biologists Pioneer member
* 2015 - University Distinguished Professor, MSU
* 2014 - William J. Beal Outstanding Faculty Award, MSU
* 2011 - Fellow of AAAS
* 2007 - Fellow of the American Society of Plant Biologists

# Links
* [Sharkey Lab](https://bmb.natsci.msu.edu/labs/sharkey-lab/sharkey-lab.aspx)
* [Sharkey lab news](https://prl.natsci.msu.edu/news-and-events/news/index.aspx?tag=Sharkey+lab)
* [Current Research](https://bmb.natsci.msu.edu/labs/sharkey-lab/current-research.aspx)
* [Google Scholar Citations](https://scholar.google.com/citations?user=sstSgW8AAAAJ&hl=en&oi=ao)
* [Wikipedia](https://en.wikipedia.org/wiki/Thomas_D._Sharkey)

Courses

  • BMB 866: Mol Plant Physiol
  • PLB 866: Mol Plant Physiol

Selected Publications

  • Sahu A, Mostofa MG, Weraduwage SM, Sharkey TD (2023) Hydroxymethylbutenyl diphosphate accumulation reveals MEP pathway regulation for high CO2-induced suppression of isoprene emission. Proceedings of the National Academy of Science USA 120, e2309536120 DOI 10.1073/pnas.2309536120 View Publication
  • Sharkey TD (2019) Discovery of the canonical Calvin-Benson cycle. Photosynthesis Research 140, 235-252 DOI: 10.1007/s11120-018-0600-2 View Publication
  • Sharkey TD (2023) The discovery of rubisco. Journal of Experimental Botany 74, 510-519 View Publication
  • Weraduwage SM, Whitten D, Kulke M, Sahu A, Vermaas J, Sharkey TD (2024) The isoprene-responsive phosphoproteome provides new insights into the putative signaling pathways and novel roles of isoprene. Plant, Cell & Environment 47, 1099–1117 DOI 10.1111/pce.14776 View Publication
  • Xu Y, Fu X, Sharkey TD, Shachar-Hill Y, Walker B (2021) The metabolic origins of non-photorespiratory CO2 release during photosynthesis: A metabolic flux analysis. Plant Physiology 186: 297-314 https://doi.org/10.1093/plphys/kiab076 View Publication
  • Xu Y, Schmiege SC, Sharkey TD (2024) The oxidative pentose phosphate pathway in photosynthesis: A tale of two shunts. New Phytologist DOI: 10.1111/nph.1973014476 View Publication
  • Xu Y, Wieloch T, Kaste JAM, Shachar-Hill Y, Sharkey TD (2022) Reimport of carbon from cytosolic and vacuolar sugar pools into the Calvin-Benson cycle explains photosynthesis labeling anomalies. Proceedings of the National Academy USA 119: e2121531119 View Publication