David Tomanek

Professor Emeritus, Department of Physics & Astronomy
Profile photo of  David Tomanek
Photo of: David Tomanek

Bio

My main current interest is to understand fundamental properties of nanostructured materials using advanced numerical techniques. My research has focussed on development and application of numerical techniques for structural, electronic, transport and optical properties of surfaces, low-dimensional systems and nanostructures. Computer simulations performed in my group addressed self-assembly and physical properties of fullerenes, nanotubes, nanowires, polymers, ferrofluids, metallic and magnetic clusters.

Many of our calculations were and are being performed on cutting edge supercomputers, such as the Earth Simulator in Yokohama, Japan. This 40 TFlop massively parallel vector supercomputer was built at a cost of 500 million dollars and requires an annual maintenance fee of 50 million dollars. diagramSubstantial computational resources of typically several months CPU time on a large fraction of the vector processors have been made available by JAMSTEC and RIST in Japan for a collaborative effort to understand the stability of electronic nanostructured devices subject to electronic excitations and to study the mechanical stability of novel materials.

# Education
* 1983: Ph.D., Freie Universität Berlin
* 1979: M.S., University of Basel, Switzerland

Selected Publications

  • Andreas Thess, Roland Lee, Pavel Nikolaev, Hongjie Dai, Pierre Petit, Jerome Robert, Chunhui Xu, Young Hee Lee, Seong Gon Kim, Daniel T. Colbert, Gustavo Scuseria, David Tománek, John E. Fischer, and Richard E. Smalley, Crystalline ropes of metallic carbon nanotubes, Science 273, 483 (1996).
  • David Teich, Zacharias G. Fthenakis, Gotthard Seifert, and David Tománek, Nanomechanical energy storage in twisted nanotube ropes, Phys. Rev. Lett. 109, 255501 (2012).
  • Makoto Ashino, Roland Wiesendanger, Andrei N. Khlobystov, Savas Berber, and David Tománek, Revealing Sub-Surface Vibrational Modes by Atom-Resolved Damping Force Spectroscopy, Phys. Rev. Lett. 102, 195503 (2009).
  • Savas Berber, Young-Kyun Kwon, and David Tománek, Unusually High Thermal Conductivity of Carbon Nanotubes, Phys. Rev. Lett. 84, 4613 (2000).
  • Yoshiyuki Miyamoto, Hong Zhang, and David Tománek, Photo-exfoliation of graphene from graphite: An ab initio study, Phys. Rev. Lett. 104, 208302 (2010).
  • Yoshiyuki Miyamoto, Noboru Jinbo, Hisashi Nakamura, Angel Rubio, and David Tománek, Photodesorption of oxygen from carbon nanotubes, Phys. Rev. B 70, 233408 (2004).